MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre Structured version   Unicode version

Theorem fimaxre 10275
Description: A finite set of real numbers has a maximum. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
fimaxre  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Distinct variable group:    x, A, y

Proof of Theorem fimaxre
StepHypRef Expression
1 ltso 9453 . . . 4  |-  <  Or  RR
2 soss 4657 . . . 4  |-  ( A 
C_  RR  ->  (  < 
Or  RR  ->  <  Or  A ) )
31, 2mpi 17 . . 3  |-  ( A 
C_  RR  ->  <  Or  A )
4 fimaxg 7557 . . 3  |-  ( (  <  Or  A  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y  < 
x ) )
53, 4syl3an1 1251 . 2  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  ( x  =/=  y  ->  y  < 
x ) )
6 ssel 3348 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( x  e.  A  ->  x  e.  RR ) )
7 ssel 3348 . . . . . . . . 9  |-  ( A 
C_  RR  ->  ( y  e.  A  ->  y  e.  RR ) )
86, 7anim12d 563 . . . . . . . 8  |-  ( A 
C_  RR  ->  ( ( x  e.  A  /\  y  e.  A )  ->  ( x  e.  RR  /\  y  e.  RR ) ) )
98imp 429 . . . . . . 7  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( x  e.  RR  /\  y  e.  RR ) )
10 leloe 9459 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  x  e.  RR )  ->  ( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) )
1110ancoms 453 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <_  x  <->  ( y  <  x  \/  y  =  x ) ) )
12 equcom 1732 . . . . . . . . . . 11  |-  ( y  =  x  <->  x  =  y )
1312orbi2i 519 . . . . . . . . . 10  |-  ( ( y  <  x  \/  y  =  x )  <-> 
( y  <  x  \/  x  =  y
) )
14 orcom 387 . . . . . . . . . 10  |-  ( ( y  <  x  \/  x  =  y )  <-> 
( x  =  y  \/  y  <  x
) )
15 neor 2694 . . . . . . . . . 10  |-  ( ( x  =  y  \/  y  <  x )  <-> 
( x  =/=  y  ->  y  <  x ) )
1613, 14, 153bitri 271 . . . . . . . . 9  |-  ( ( y  <  x  \/  y  =  x )  <-> 
( x  =/=  y  ->  y  <  x ) )
1711, 16syl6bb 261 . . . . . . . 8  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( y  <_  x  <->  ( x  =/=  y  -> 
y  <  x )
) )
1817biimprd 223 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( x  =/=  y  ->  y  <  x )  ->  y  <_  x ) )
199, 18syl 16 . . . . . 6  |-  ( ( A  C_  RR  /\  (
x  e.  A  /\  y  e.  A )
)  ->  ( (
x  =/=  y  -> 
y  <  x )  ->  y  <_  x )
)
2019anassrs 648 . . . . 5  |-  ( ( ( A  C_  RR  /\  x  e.  A )  /\  y  e.  A
)  ->  ( (
x  =/=  y  -> 
y  <  x )  ->  y  <_  x )
)
2120ralimdva 2792 . . . 4  |-  ( ( A  C_  RR  /\  x  e.  A )  ->  ( A. y  e.  A  ( x  =/=  y  ->  y  <  x )  ->  A. y  e.  A  y  <_  x ) )
2221reximdva 2826 . . 3  |-  ( A 
C_  RR  ->  ( E. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
y  <  x )  ->  E. x  e.  A  A. y  e.  A  y  <_  x ) )
23223ad2ant1 1009 . 2  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  ( E. x  e.  A  A. y  e.  A  (
x  =/=  y  -> 
y  <  x )  ->  E. x  e.  A  A. y  e.  A  y  <_  x ) )
245, 23mpd 15 1  |-  ( ( A  C_  RR  /\  A  e.  Fin  /\  A  =/=  (/) )  ->  E. x  e.  A  A. y  e.  A  y  <_  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 965    e. wcel 1756    =/= wne 2604   A.wral 2713   E.wrex 2714    C_ wss 3326   (/)c0 3635   class class class wbr 4290    Or wor 4638   Fincfn 7308   RRcr 9279    < clt 9416    <_ cle 9417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2422  ax-sep 4411  ax-nul 4419  ax-pow 4468  ax-pr 4529  ax-un 6370  ax-resscn 9337  ax-pre-lttri 9354  ax-pre-lttrn 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3185  df-csb 3287  df-dif 3329  df-un 3331  df-in 3333  df-ss 3340  df-pss 3342  df-nul 3636  df-if 3790  df-pw 3860  df-sn 3876  df-pr 3878  df-tp 3880  df-op 3882  df-uni 4090  df-br 4291  df-opab 4349  df-mpt 4350  df-tr 4384  df-eprel 4630  df-id 4634  df-po 4639  df-so 4640  df-fr 4677  df-we 4679  df-ord 4720  df-on 4721  df-lim 4722  df-suc 4723  df-xp 4844  df-rel 4845  df-cnv 4846  df-co 4847  df-dm 4848  df-rn 4849  df-res 4850  df-ima 4851  df-iota 5379  df-fun 5418  df-fn 5419  df-f 5420  df-f1 5421  df-fo 5422  df-f1o 5423  df-fv 5424  df-om 6475  df-1o 6918  df-er 7099  df-en 7309  df-dom 7310  df-sdom 7311  df-fin 7312  df-pnf 9418  df-mnf 9419  df-xr 9420  df-ltxr 9421  df-le 9422
This theorem is referenced by:  fimaxre2  10276  0ram2  14080  0ramcl  14082  ballotlemfc0  26873  ballotlemfcc  26874  filbcmb  28631
  Copyright terms: Public domain W3C validator