MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimacnvdisj Structured version   Unicode version

Theorem fimacnvdisj 5700
Description: The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
Assertion
Ref Expression
fimacnvdisj  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )

Proof of Theorem fimacnvdisj
StepHypRef Expression
1 df-rn 4962 . . . 4  |-  ran  F  =  dom  `' F
2 frn 5676 . . . . 5  |-  ( F : A --> B  ->  ran  F  C_  B )
32adantr 465 . . . 4  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ran  F 
C_  B )
41, 3syl5eqssr 3512 . . 3  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  dom  `' F  C_  B )
5 ssdisj 3839 . . 3  |-  ( ( dom  `' F  C_  B  /\  ( B  i^i  C )  =  (/) )  -> 
( dom  `' F  i^i  C )  =  (/) )
64, 5sylancom 667 . 2  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( dom  `' F  i^i  C )  =  (/) )
7 imadisj 5299 . 2  |-  ( ( `' F " C )  =  (/)  <->  ( dom  `' F  i^i  C )  =  (/) )
86, 7sylibr 212 1  |-  ( ( F : A --> B  /\  ( B  i^i  C )  =  (/) )  ->  ( `' F " C )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    i^i cin 3438    C_ wss 3439   (/)c0 3748   `'ccnv 4950   dom cdm 4951   ran crn 4952   "cima 4954   -->wf 5525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-br 4404  df-opab 4462  df-xp 4957  df-cnv 4959  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-f 5533
This theorem is referenced by:  vdwmc2  14161  gsumval3a  16503  gsumval3aOLD  16504  psrbag0  17703  mbfconstlem  21243  itg1val2  21298  ofpreima2  26156
  Copyright terms: Public domain W3C validator