MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filssufilg Structured version   Visualization version   Unicode version

Theorem filssufilg 20974
Description: A filter is contained in some ultrafilter. This version of filssufil 20975 contains the choice as a hypothesis (in the assumption that  ~P ~P X is well-orderable). (Contributed by Mario Carneiro, 24-May-2015.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filssufilg  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  E. f  e.  ( UFil `  X
) F  C_  f
)
Distinct variable groups:    f, F    f, X

Proof of Theorem filssufilg
Dummy variables  g  h  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 467 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  ~P ~P X  e.  dom  card )
2 rabss 3517 . . . . 5  |-  ( { g  e.  ( Fil `  X )  |  F  C_  g }  C_  ~P ~P X  <->  A. g  e.  ( Fil `  X ) ( F  C_  g  ->  g  e.  ~P ~P X ) )
3 filsspw 20914 . . . . . . 7  |-  ( g  e.  ( Fil `  X
)  ->  g  C_  ~P X )
4 selpw 3969 . . . . . . 7  |-  ( g  e.  ~P ~P X  <->  g 
C_  ~P X )
53, 4sylibr 217 . . . . . 6  |-  ( g  e.  ( Fil `  X
)  ->  g  e.  ~P ~P X )
65a1d 26 . . . . 5  |-  ( g  e.  ( Fil `  X
)  ->  ( F  C_  g  ->  g  e.  ~P ~P X ) )
72, 6mprgbir 2763 . . . 4  |-  { g  e.  ( Fil `  X
)  |  F  C_  g }  C_  ~P ~P X
8 ssnum 8495 . . . 4  |-  ( ( ~P ~P X  e. 
dom  card  /\  { g  e.  ( Fil `  X
)  |  F  C_  g }  C_  ~P ~P X )  ->  { g  e.  ( Fil `  X
)  |  F  C_  g }  e.  dom  card )
91, 7, 8sylancl 673 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  { g  e.  ( Fil `  X
)  |  F  C_  g }  e.  dom  card )
10 ssid 3462 . . . . . . 7  |-  F  C_  F
1110jctr 549 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  ( F  e.  ( Fil `  X
)  /\  F  C_  F
) )
12 sseq2 3465 . . . . . . 7  |-  ( g  =  F  ->  ( F  C_  g  <->  F  C_  F
) )
1312elrab 3207 . . . . . 6  |-  ( F  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  <->  ( F  e.  ( Fil `  X
)  /\  F  C_  F
) )
1411, 13sylibr 217 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  { g  e.  ( Fil `  X )  |  F  C_  g } )
15 ne0i 3748 . . . . 5  |-  ( F  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  ->  { g  e.  ( Fil `  X
)  |  F  C_  g }  =/=  (/) )
1614, 15syl 17 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  { g  e.  ( Fil `  X
)  |  F  C_  g }  =/=  (/) )
1716adantr 471 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  { g  e.  ( Fil `  X
)  |  F  C_  g }  =/=  (/) )
18 simpr1 1020 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  x  C_ 
{ g  e.  ( Fil `  X )  |  F  C_  g } )
19 ssrab 3518 . . . . . . . . . 10  |-  ( x 
C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  <->  ( x  C_  ( Fil `  X )  /\  A. g  e.  x  F  C_  g
) )
2018, 19sylib 201 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  (
x  C_  ( Fil `  X )  /\  A. g  e.  x  F  C_  g ) )
2120simpld 465 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  x  C_  ( Fil `  X
) )
22 simpr2 1021 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  x  =/=  (/) )
23 simpr3 1022 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  -> [ C.]  Or  x
)
24 sorpssun 6604 . . . . . . . . . 10  |-  ( ( [ C.]  Or  x  /\  (
g  e.  x  /\  h  e.  x )
)  ->  ( g  u.  h )  e.  x
)
2524ralrimivva 2820 . . . . . . . . 9  |-  ( [ C.]  Or  x  ->  A. g  e.  x  A. h  e.  x  ( g  u.  h )  e.  x
)
2623, 25syl 17 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  A. g  e.  x  A. h  e.  x  ( g  u.  h )  e.  x
)
27 filuni 20948 . . . . . . . 8  |-  ( ( x  C_  ( Fil `  X )  /\  x  =/=  (/)  /\  A. g  e.  x  A. h  e.  x  ( g  u.  h )  e.  x
)  ->  U. x  e.  ( Fil `  X
) )
2821, 22, 26, 27syl3anc 1276 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  U. x  e.  ( Fil `  X
) )
29 n0 3752 . . . . . . . . 9  |-  ( x  =/=  (/)  <->  E. h  h  e.  x )
30 ssel2 3438 . . . . . . . . . . . . . 14  |-  ( ( x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  h  e.  x )  ->  h  e.  { g  e.  ( Fil `  X )  |  F  C_  g } )
31 sseq2 3465 . . . . . . . . . . . . . . 15  |-  ( g  =  h  ->  ( F  C_  g  <->  F  C_  h
) )
3231elrab 3207 . . . . . . . . . . . . . 14  |-  ( h  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  <->  ( h  e.  ( Fil `  X
)  /\  F  C_  h
) )
3330, 32sylib 201 . . . . . . . . . . . . 13  |-  ( ( x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  h  e.  x )  ->  (
h  e.  ( Fil `  X )  /\  F  C_  h ) )
3433simprd 469 . . . . . . . . . . . 12  |-  ( ( x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  h  e.  x )  ->  F  C_  h )
35 ssuni 4233 . . . . . . . . . . . 12  |-  ( ( F  C_  h  /\  h  e.  x )  ->  F  C_  U. x
)
3634, 35sylancom 678 . . . . . . . . . . 11  |-  ( ( x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  h  e.  x )  ->  F  C_ 
U. x )
3736ex 440 . . . . . . . . . 10  |-  ( x 
C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  ->  ( h  e.  x  ->  F  C_ 
U. x ) )
3837exlimdv 1789 . . . . . . . . 9  |-  ( x 
C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  ->  ( E. h  h  e.  x  ->  F  C_  U. x
) )
3929, 38syl5bi 225 . . . . . . . 8  |-  ( x 
C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  ->  ( x  =/=  (/)  ->  F  C_  U. x
) )
4018, 22, 39sylc 62 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  F  C_ 
U. x )
41 sseq2 3465 . . . . . . . 8  |-  ( g  =  U. x  -> 
( F  C_  g  <->  F 
C_  U. x ) )
4241elrab 3207 . . . . . . 7  |-  ( U. x  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  <->  ( U. x  e.  ( Fil `  X
)  /\  F  C_  U. x
) )
4328, 40, 42sylanbrc 675 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
) )  ->  U. x  e.  { g  e.  ( Fil `  X )  |  F  C_  g } )
4443ex 440 . . . . 5  |-  ( F  e.  ( Fil `  X
)  ->  ( (
x  C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  { g  e.  ( Fil `  X )  |  F  C_  g } ) )
4544alrimiv 1783 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  A. x
( ( x  C_  { g  e.  ( Fil `  X )  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  { g  e.  ( Fil `  X )  |  F  C_  g } ) )
4645adantr 471 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  A. x
( ( x  C_  { g  e.  ( Fil `  X )  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  { g  e.  ( Fil `  X )  |  F  C_  g } ) )
47 zornn0g 8960 . . 3  |-  ( ( { g  e.  ( Fil `  X )  |  F  C_  g }  e.  dom  card  /\  {
g  e.  ( Fil `  X )  |  F  C_  g }  =/=  (/)  /\  A. x ( ( x 
C_  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  x  =/=  (/)  /\ [ C.]  Or  x
)  ->  U. x  e.  { g  e.  ( Fil `  X )  |  F  C_  g } ) )  ->  E. f  e.  { g  e.  ( Fil `  X
)  |  F  C_  g } A. h  e. 
{ g  e.  ( Fil `  X )  |  F  C_  g }  -.  f  C.  h
)
489, 17, 46, 47syl3anc 1276 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  E. f  e.  { g  e.  ( Fil `  X )  |  F  C_  g } A. h  e.  {
g  e.  ( Fil `  X )  |  F  C_  g }  -.  f  C.  h )
49 sseq2 3465 . . . . 5  |-  ( g  =  f  ->  ( F  C_  g  <->  F  C_  f
) )
5049elrab 3207 . . . 4  |-  ( f  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  <->  ( f  e.  ( Fil `  X
)  /\  F  C_  f
) )
5131ralrab 3211 . . . 4  |-  ( A. h  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  -.  f  C.  h  <->  A. h  e.  ( Fil `  X ) ( F  C_  h  ->  -.  f  C.  h
) )
52 simpll 765 . . . . . 6  |-  ( ( ( f  e.  ( Fil `  X )  /\  F  C_  f
)  /\  A. h  e.  ( Fil `  X
) ( F  C_  h  ->  -.  f  C.  h
) )  ->  f  e.  ( Fil `  X
) )
53 sstr2 3450 . . . . . . . . . . 11  |-  ( F 
C_  f  ->  (
f  C_  h  ->  F 
C_  h ) )
5453imim1d 78 . . . . . . . . . 10  |-  ( F 
C_  f  ->  (
( F  C_  h  ->  -.  f  C.  h
)  ->  ( f  C_  h  ->  -.  f  C.  h ) ) )
55 df-pss 3431 . . . . . . . . . . . . 13  |-  ( f 
C.  h  <->  ( f  C_  h  /\  f  =/=  h ) )
5655simplbi2 635 . . . . . . . . . . . 12  |-  ( f 
C_  h  ->  (
f  =/=  h  -> 
f  C.  h )
)
5756necon1bd 2653 . . . . . . . . . . 11  |-  ( f 
C_  h  ->  ( -.  f  C.  h  -> 
f  =  h ) )
5857a2i 14 . . . . . . . . . 10  |-  ( ( f  C_  h  ->  -.  f  C.  h )  ->  ( f  C_  h  ->  f  =  h ) )
5954, 58syl6 34 . . . . . . . . 9  |-  ( F 
C_  f  ->  (
( F  C_  h  ->  -.  f  C.  h
)  ->  ( f  C_  h  ->  f  =  h ) ) )
6059ralimdv 2809 . . . . . . . 8  |-  ( F 
C_  f  ->  ( A. h  e.  ( Fil `  X ) ( F  C_  h  ->  -.  f  C.  h )  ->  A. h  e.  ( Fil `  X ) ( f  C_  h  ->  f  =  h ) ) )
6160imp 435 . . . . . . 7  |-  ( ( F  C_  f  /\  A. h  e.  ( Fil `  X ) ( F 
C_  h  ->  -.  f  C.  h ) )  ->  A. h  e.  ( Fil `  X ) ( f  C_  h  ->  f  =  h ) )
6261adantll 725 . . . . . 6  |-  ( ( ( f  e.  ( Fil `  X )  /\  F  C_  f
)  /\  A. h  e.  ( Fil `  X
) ( F  C_  h  ->  -.  f  C.  h
) )  ->  A. h  e.  ( Fil `  X
) ( f  C_  h  ->  f  =  h ) )
63 isufil2 20971 . . . . . 6  |-  ( f  e.  ( UFil `  X
)  <->  ( f  e.  ( Fil `  X
)  /\  A. h  e.  ( Fil `  X
) ( f  C_  h  ->  f  =  h ) ) )
6452, 62, 63sylanbrc 675 . . . . 5  |-  ( ( ( f  e.  ( Fil `  X )  /\  F  C_  f
)  /\  A. h  e.  ( Fil `  X
) ( F  C_  h  ->  -.  f  C.  h
) )  ->  f  e.  ( UFil `  X
) )
65 simplr 767 . . . . 5  |-  ( ( ( f  e.  ( Fil `  X )  /\  F  C_  f
)  /\  A. h  e.  ( Fil `  X
) ( F  C_  h  ->  -.  f  C.  h
) )  ->  F  C_  f )
6664, 65jca 539 . . . 4  |-  ( ( ( f  e.  ( Fil `  X )  /\  F  C_  f
)  /\  A. h  e.  ( Fil `  X
) ( F  C_  h  ->  -.  f  C.  h
) )  ->  (
f  e.  ( UFil `  X )  /\  F  C_  f ) )
6750, 51, 66syl2anb 486 . . 3  |-  ( ( f  e.  { g  e.  ( Fil `  X
)  |  F  C_  g }  /\  A. h  e.  { g  e.  ( Fil `  X )  |  F  C_  g }  -.  f  C.  h
)  ->  ( f  e.  ( UFil `  X
)  /\  F  C_  f
) )
6867reximi2 2865 . 2  |-  ( E. f  e.  { g  e.  ( Fil `  X
)  |  F  C_  g } A. h  e. 
{ g  e.  ( Fil `  X )  |  F  C_  g }  -.  f  C.  h  ->  E. f  e.  (
UFil `  X ) F  C_  f )
6948, 68syl 17 1  |-  ( ( F  e.  ( Fil `  X )  /\  ~P ~P X  e.  dom  card )  ->  E. f  e.  ( UFil `  X
) F  C_  f
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 375    /\ w3a 991   A.wal 1452   E.wex 1673    e. wcel 1897    =/= wne 2632   A.wral 2748   E.wrex 2749   {crab 2752    u. cun 3413    C_ wss 3415    C. wpss 3416   (/)c0 3742   ~Pcpw 3962   U.cuni 4211    Or wor 4772   dom cdm 4852   ` cfv 5600   [ C.] crpss 6596   cardccrd 8394   Filcfil 20908   UFilcufil 20962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1679  ax-4 1692  ax-5 1768  ax-6 1815  ax-7 1861  ax-8 1899  ax-9 1906  ax-10 1925  ax-11 1930  ax-12 1943  ax-13 2101  ax-ext 2441  ax-rep 4528  ax-sep 4538  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6609
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1457  df-ex 1674  df-nf 1678  df-sb 1808  df-eu 2313  df-mo 2314  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2591  df-ne 2634  df-nel 2635  df-ral 2753  df-rex 2754  df-reu 2755  df-rmo 2756  df-rab 2757  df-v 3058  df-sbc 3279  df-csb 3375  df-dif 3418  df-un 3420  df-in 3422  df-ss 3429  df-pss 3431  df-nul 3743  df-if 3893  df-pw 3964  df-sn 3980  df-pr 3982  df-tp 3984  df-op 3986  df-uni 4212  df-int 4248  df-iun 4293  df-br 4416  df-opab 4475  df-mpt 4476  df-tr 4511  df-eprel 4763  df-id 4767  df-po 4773  df-so 4774  df-fr 4811  df-se 4812  df-we 4813  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-pred 5398  df-ord 5444  df-on 5445  df-lim 5446  df-suc 5447  df-iota 5564  df-fun 5602  df-fn 5603  df-f 5604  df-f1 5605  df-fo 5606  df-f1o 5607  df-fv 5608  df-isom 5609  df-riota 6276  df-ov 6317  df-oprab 6318  df-mpt2 6319  df-rpss 6597  df-om 6719  df-wrecs 7053  df-recs 7115  df-rdg 7153  df-1o 7207  df-oadd 7211  df-er 7388  df-en 7595  df-dom 7596  df-fin 7598  df-fi 7950  df-card 8398  df-cda 8623  df-fbas 19015  df-fg 19016  df-fil 20909  df-ufil 20964
This theorem is referenced by:  filssufil  20975  numufl  20978
  Copyright terms: Public domain W3C validator