MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filss Structured version   Unicode version

Theorem filss 20086
Description: A filter is closed under taking supersets. (Contributed by FL, 20-Jul-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filss  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  B  C_  X  /\  A  C_  B ) )  ->  B  e.  F )

Proof of Theorem filss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 isfil 20080 . . . 4  |-  ( F  e.  ( Fil `  X
)  <->  ( F  e.  ( fBas `  X
)  /\  A. x  e.  ~P  X ( ( F  i^i  ~P x
)  =/=  (/)  ->  x  e.  F ) ) )
21simprbi 464 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  A. x  e.  ~P  X ( ( F  i^i  ~P x
)  =/=  (/)  ->  x  e.  F ) )
32adantr 465 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  B  C_  X  /\  A  C_  B ) )  ->  A. x  e.  ~P  X ( ( F  i^i  ~P x )  =/=  (/)  ->  x  e.  F ) )
4 elfvdm 5890 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  dom  Fil )
5 simp2 997 . . 3  |-  ( ( A  e.  F  /\  B  C_  X  /\  A  C_  B )  ->  B  C_  X )
6 elpw2g 4610 . . . 4  |-  ( X  e.  dom  Fil  ->  ( B  e.  ~P X  <->  B 
C_  X ) )
76biimpar 485 . . 3  |-  ( ( X  e.  dom  Fil  /\  B  C_  X )  ->  B  e.  ~P X
)
84, 5, 7syl2an 477 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  B  C_  X  /\  A  C_  B ) )  ->  B  e.  ~P X
)
9 simpr1 1002 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  B  C_  X  /\  A  C_  B ) )  ->  A  e.  F )
10 simpr3 1004 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  B  C_  X  /\  A  C_  B ) )  ->  A  C_  B )
11 elpwg 4018 . . . . 5  |-  ( A  e.  F  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
129, 11syl 16 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  B  C_  X  /\  A  C_  B ) )  -> 
( A  e.  ~P B 
<->  A  C_  B )
)
1310, 12mpbird 232 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  B  C_  X  /\  A  C_  B ) )  ->  A  e.  ~P B
)
14 inelcm 3881 . . 3  |-  ( ( A  e.  F  /\  A  e.  ~P B
)  ->  ( F  i^i  ~P B )  =/=  (/) )
159, 13, 14syl2anc 661 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  B  C_  X  /\  A  C_  B ) )  -> 
( F  i^i  ~P B )  =/=  (/) )
16 pweq 4013 . . . . . 6  |-  ( x  =  B  ->  ~P x  =  ~P B
)
1716ineq2d 3700 . . . . 5  |-  ( x  =  B  ->  ( F  i^i  ~P x )  =  ( F  i^i  ~P B ) )
1817neeq1d 2744 . . . 4  |-  ( x  =  B  ->  (
( F  i^i  ~P x )  =/=  (/)  <->  ( F  i^i  ~P B )  =/=  (/) ) )
19 eleq1 2539 . . . 4  |-  ( x  =  B  ->  (
x  e.  F  <->  B  e.  F ) )
2018, 19imbi12d 320 . . 3  |-  ( x  =  B  ->  (
( ( F  i^i  ~P x )  =/=  (/)  ->  x  e.  F )  <->  ( ( F  i^i  ~P B )  =/=  (/)  ->  B  e.  F ) ) )
2120rspccv 3211 . 2  |-  ( A. x  e.  ~P  X
( ( F  i^i  ~P x )  =/=  (/)  ->  x  e.  F )  ->  ( B  e.  ~P X  ->  ( ( F  i^i  ~P B )  =/=  (/)  ->  B  e.  F ) ) )
223, 8, 15, 21syl3c 61 1  |-  ( ( F  e.  ( Fil `  X )  /\  ( A  e.  F  /\  B  C_  X  /\  A  C_  B ) )  ->  B  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   dom cdm 4999   ` cfv 5586   fBascfbas 18174   Filcfil 20078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fv 5594  df-fil 20079
This theorem is referenced by:  filin  20087  filtop  20088  isfil2  20089  infil  20096  fgfil  20108  fgabs  20112  filcon  20116  filuni  20118  trfil2  20120  trfg  20124  isufil2  20141  ufprim  20142  ufileu  20152  filufint  20153  elfm3  20183  rnelfm  20186  fmfnfmlem2  20188  fmfnfmlem4  20190  flimopn  20208  flimrest  20216  flimfnfcls  20261  fclscmpi  20262  alexsublem  20276  metustOLD  20802  metust  20803  cfil3i  21440  cfilfcls  21445  iscmet3lem2  21463  equivcfil  21470  relcmpcmet  21487  minveclem4  21579  fgmin  29789
  Copyright terms: Public domain W3C validator