MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filn0 Structured version   Unicode version

Theorem filn0 20208
Description: The empty set is not a filter. Remark below def. 1 of [BourbakiTop1] p. I.36. (Contributed by FL, 30-Oct-2007.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
filn0  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )

Proof of Theorem filn0
StepHypRef Expression
1 filtop 20201 . 2  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
2 ne0i 3796 . 2  |-  ( X  e.  F  ->  F  =/=  (/) )
31, 2syl 16 1  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1767    =/= wne 2662   (/)c0 3790   ` cfv 5593   Filcfil 20191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fv 5601  df-fbas 18263  df-fil 20192
This theorem is referenced by:  ufileu  20265  filufint  20266  uffixfr  20269  uffix2  20270  uffixsn  20271  hausflim  20327  fclsval  20354  isfcls  20355  fclsopn  20360  fclsfnflim  20373  filnetlem4  30094
  Copyright terms: Public domain W3C validator