MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  filcon Structured version   Unicode version

Theorem filcon 20509
Description: A filter gives rise to a connected topology. (Contributed by Jeff Hankins, 6-Dec-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
filcon  |-  ( F  e.  ( Fil `  X
)  ->  ( F  u.  { (/) } )  e. 
Con )

Proof of Theorem filcon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( Fil `  X ) )
2 filunibas 20507 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  U. F  =  X )
32fveq2d 5876 . . 3  |-  ( F  e.  ( Fil `  X
)  ->  ( Fil ` 
U. F )  =  ( Fil `  X
) )
41, 3eleqtrrd 2548 . 2  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( Fil `  U. F
) )
5 nss 3557 . . . . . . . 8  |-  ( -.  x  C_  { (/) }  <->  E. y
( y  e.  x  /\  -.  y  e.  { (/)
} ) )
6 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  ( y  e.  x  /\  -.  y  e.  { (/) } ) )  ->  F  e.  ( Fil `  U. F
) )
7 ssel2 3494 . . . . . . . . . . . . . . . . 17  |-  ( ( x  C_  ( F  u.  { (/) } )  /\  y  e.  x )  ->  y  e.  ( F  u.  { (/) } ) )
87adantll 713 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  y  e.  x )  ->  y  e.  ( F  u.  { (/)
} ) )
9 elun 3641 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( F  u.  {
(/) } )  <->  ( y  e.  F  \/  y  e.  { (/) } ) )
108, 9sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  y  e.  x )  ->  (
y  e.  F  \/  y  e.  { (/) } ) )
1110orcomd 388 . . . . . . . . . . . . . 14  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  y  e.  x )  ->  (
y  e.  { (/) }  \/  y  e.  F
) )
1211ord 377 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  y  e.  x )  ->  ( -.  y  e.  { (/) }  ->  y  e.  F
) )
1312impr 619 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  ( y  e.  x  /\  -.  y  e.  { (/) } ) )  ->  y  e.  F )
14 uniss 4272 . . . . . . . . . . . . . 14  |-  ( x 
C_  ( F  u.  {
(/) } )  ->  U. x  C_ 
U. ( F  u.  {
(/) } ) )
1514ad2antlr 726 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  ( y  e.  x  /\  -.  y  e.  { (/) } ) )  ->  U. x  C_ 
U. ( F  u.  {
(/) } ) )
16 uniun 4270 . . . . . . . . . . . . . 14  |-  U. ( F  u.  { (/) } )  =  ( U. F  u.  U. { (/) } )
17 0ex 4587 . . . . . . . . . . . . . . . 16  |-  (/)  e.  _V
1817unisn 4266 . . . . . . . . . . . . . . 15  |-  U. { (/)
}  =  (/)
1918uneq2i 3651 . . . . . . . . . . . . . 14  |-  ( U. F  u.  U. { (/) } )  =  ( U. F  u.  (/) )
20 un0 3819 . . . . . . . . . . . . . 14  |-  ( U. F  u.  (/) )  = 
U. F
2116, 19, 203eqtrri 2491 . . . . . . . . . . . . 13  |-  U. F  =  U. ( F  u.  {
(/) } )
2215, 21syl6sseqr 3546 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  ( y  e.  x  /\  -.  y  e.  { (/) } ) )  ->  U. x  C_ 
U. F )
23 elssuni 4281 . . . . . . . . . . . . 13  |-  ( y  e.  x  ->  y  C_ 
U. x )
2423ad2antrl 727 . . . . . . . . . . . 12  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  ( y  e.  x  /\  -.  y  e.  { (/) } ) )  ->  y  C_  U. x )
25 filss 20479 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  U. F )  /\  ( y  e.  F  /\  U. x  C_  U. F  /\  y  C_  U. x
) )  ->  U. x  e.  F )
266, 13, 22, 24, 25syl13anc 1230 . . . . . . . . . . 11  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  ( y  e.  x  /\  -.  y  e.  { (/) } ) )  ->  U. x  e.  F )
27 elun1 3667 . . . . . . . . . . 11  |-  ( U. x  e.  F  ->  U. x  e.  ( F  u.  { (/) } ) )
2826, 27syl 16 . . . . . . . . . 10  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  C_  ( F  u.  { (/) } ) )  /\  ( y  e.  x  /\  -.  y  e.  { (/) } ) )  ->  U. x  e.  ( F  u.  { (/)
} ) )
2928ex 434 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  C_  ( F  u.  {
(/) } ) )  -> 
( ( y  e.  x  /\  -.  y  e.  { (/) } )  ->  U. x  e.  ( F  u.  { (/) } ) ) )
3029exlimdv 1725 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  C_  ( F  u.  {
(/) } ) )  -> 
( E. y ( y  e.  x  /\  -.  y  e.  { (/) } )  ->  U. x  e.  ( F  u.  { (/)
} ) ) )
315, 30syl5bi 217 . . . . . . 7  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  C_  ( F  u.  {
(/) } ) )  -> 
( -.  x  C_  {
(/) }  ->  U. x  e.  ( F  u.  { (/)
} ) ) )
32 uni0b 4276 . . . . . . . 8  |-  ( U. x  =  (/)  <->  x  C_  { (/) } )
33 ssun2 3664 . . . . . . . . . 10  |-  { (/) } 
C_  ( F  u.  {
(/) } )
3417snid 4060 . . . . . . . . . 10  |-  (/)  e.  { (/)
}
3533, 34sselii 3496 . . . . . . . . 9  |-  (/)  e.  ( F  u.  { (/) } )
36 eleq1 2529 . . . . . . . . 9  |-  ( U. x  =  (/)  ->  ( U. x  e.  ( F  u.  { (/) } )  <->  (/) 
e.  ( F  u.  {
(/) } ) ) )
3735, 36mpbiri 233 . . . . . . . 8  |-  ( U. x  =  (/)  ->  U. x  e.  ( F  u.  { (/)
} ) )
3832, 37sylbir 213 . . . . . . 7  |-  ( x 
C_  { (/) }  ->  U. x  e.  ( F  u.  { (/) } ) )
3931, 38pm2.61d2 160 . . . . . 6  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  C_  ( F  u.  {
(/) } ) )  ->  U. x  e.  ( F  u.  { (/) } ) )
4039ex 434 . . . . 5  |-  ( F  e.  ( Fil `  U. F )  ->  (
x  C_  ( F  u.  { (/) } )  ->  U. x  e.  ( F  u.  { (/) } ) ) )
4140alrimiv 1720 . . . 4  |-  ( F  e.  ( Fil `  U. F )  ->  A. x
( x  C_  ( F  u.  { (/) } )  ->  U. x  e.  ( F  u.  { (/) } ) ) )
42 filin 20480 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  F  /\  y  e.  F )  ->  ( x  i^i  y
)  e.  F )
43 elun1 3667 . . . . . . . . . 10  |-  ( ( x  i^i  y )  e.  F  ->  (
x  i^i  y )  e.  ( F  u.  { (/)
} ) )
4442, 43syl 16 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  F  /\  y  e.  F )  ->  ( x  i^i  y
)  e.  ( F  u.  { (/) } ) )
45443expa 1196 . . . . . . . 8  |-  ( ( ( F  e.  ( Fil `  U. F
)  /\  x  e.  F )  /\  y  e.  F )  ->  (
x  i^i  y )  e.  ( F  u.  { (/)
} ) )
4645ralrimiva 2871 . . . . . . 7  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  F )  ->  A. y  e.  F  ( x  i^i  y
)  e.  ( F  u.  { (/) } ) )
47 elsni 4057 . . . . . . . . 9  |-  ( y  e.  { (/) }  ->  y  =  (/) )
48 ineq2 3690 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( x  i^i  y )  =  ( x  i^i  (/) ) )
49 in0 3820 . . . . . . . . . . 11  |-  ( x  i^i  (/) )  =  (/)
5048, 49syl6eq 2514 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( x  i^i  y )  =  (/) )
5150, 35syl6eqel 2553 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( x  i^i  y )  e.  ( F  u.  { (/)
} ) )
5247, 51syl 16 . . . . . . . 8  |-  ( y  e.  { (/) }  ->  ( x  i^i  y )  e.  ( F  u.  {
(/) } ) )
5352rgen 2817 . . . . . . 7  |-  A. y  e.  { (/) }  ( x  i^i  y )  e.  ( F  u.  { (/)
} )
54 ralun 3682 . . . . . . 7  |-  ( ( A. y  e.  F  ( x  i^i  y
)  e.  ( F  u.  { (/) } )  /\  A. y  e. 
{ (/) }  ( x  i^i  y )  e.  ( F  u.  { (/)
} ) )  ->  A. y  e.  ( F  u.  { (/) } ) ( x  i^i  y
)  e.  ( F  u.  { (/) } ) )
5546, 53, 54sylancl 662 . . . . . 6  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  F )  ->  A. y  e.  ( F  u.  { (/) } ) ( x  i^i  y )  e.  ( F  u.  { (/) } ) )
5655ralrimiva 2871 . . . . 5  |-  ( F  e.  ( Fil `  U. F )  ->  A. x  e.  F  A. y  e.  ( F  u.  { (/)
} ) ( x  i^i  y )  e.  ( F  u.  { (/)
} ) )
57 elsni 4057 . . . . . . 7  |-  ( x  e.  { (/) }  ->  x  =  (/) )
58 ineq1 3689 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( x  i^i  y )  =  ( (/)  i^i  y
) )
59 0ss 3823 . . . . . . . . . . 11  |-  (/)  C_  y
60 df-ss 3485 . . . . . . . . . . 11  |-  ( (/)  C_  y  <->  ( (/)  i^i  y
)  =  (/) )
6159, 60mpbi 208 . . . . . . . . . 10  |-  ( (/)  i^i  y )  =  (/)
6258, 61syl6eq 2514 . . . . . . . . 9  |-  ( x  =  (/)  ->  ( x  i^i  y )  =  (/) )
6362, 35syl6eqel 2553 . . . . . . . 8  |-  ( x  =  (/)  ->  ( x  i^i  y )  e.  ( F  u.  { (/)
} ) )
6463ralrimivw 2872 . . . . . . 7  |-  ( x  =  (/)  ->  A. y  e.  ( F  u.  { (/)
} ) ( x  i^i  y )  e.  ( F  u.  { (/)
} ) )
6557, 64syl 16 . . . . . 6  |-  ( x  e.  { (/) }  ->  A. y  e.  ( F  u.  { (/) } ) ( x  i^i  y
)  e.  ( F  u.  { (/) } ) )
6665rgen 2817 . . . . 5  |-  A. x  e.  { (/) } A. y  e.  ( F  u.  { (/)
} ) ( x  i^i  y )  e.  ( F  u.  { (/)
} )
67 ralun 3682 . . . . 5  |-  ( ( A. x  e.  F  A. y  e.  ( F  u.  { (/) } ) ( x  i^i  y
)  e.  ( F  u.  { (/) } )  /\  A. x  e. 
{ (/) } A. y  e.  ( F  u.  { (/)
} ) ( x  i^i  y )  e.  ( F  u.  { (/)
} ) )  ->  A. x  e.  ( F  u.  { (/) } ) A. y  e.  ( F  u.  { (/) } ) ( x  i^i  y )  e.  ( F  u.  { (/) } ) )
6856, 66, 67sylancl 662 . . . 4  |-  ( F  e.  ( Fil `  U. F )  ->  A. x  e.  ( F  u.  { (/)
} ) A. y  e.  ( F  u.  { (/)
} ) ( x  i^i  y )  e.  ( F  u.  { (/)
} ) )
69 p0ex 4643 . . . . . 6  |-  { (/) }  e.  _V
70 unexg 6600 . . . . . 6  |-  ( ( F  e.  ( Fil `  U. F )  /\  {
(/) }  e.  _V )  ->  ( F  u.  {
(/) } )  e.  _V )
7169, 70mpan2 671 . . . . 5  |-  ( F  e.  ( Fil `  U. F )  ->  ( F  u.  { (/) } )  e.  _V )
72 istopg 19530 . . . . 5  |-  ( ( F  u.  { (/) } )  e.  _V  ->  ( ( F  u.  { (/)
} )  e.  Top  <->  ( A. x ( x  C_  ( F  u.  { (/) } )  ->  U. x  e.  ( F  u.  { (/)
} ) )  /\  A. x  e.  ( F  u.  { (/) } ) A. y  e.  ( F  u.  { (/) } ) ( x  i^i  y )  e.  ( F  u.  { (/) } ) ) ) )
7371, 72syl 16 . . . 4  |-  ( F  e.  ( Fil `  U. F )  ->  (
( F  u.  { (/)
} )  e.  Top  <->  ( A. x ( x  C_  ( F  u.  { (/) } )  ->  U. x  e.  ( F  u.  { (/)
} ) )  /\  A. x  e.  ( F  u.  { (/) } ) A. y  e.  ( F  u.  { (/) } ) ( x  i^i  y )  e.  ( F  u.  { (/) } ) ) ) )
7441, 68, 73mpbir2and 922 . . 3  |-  ( F  e.  ( Fil `  U. F )  ->  ( F  u.  { (/) } )  e.  Top )
7521cldopn 19658 . . . . . . . 8  |-  ( x  e.  ( Clsd `  ( F  u.  { (/) } ) )  ->  ( U. F  \  x )  e.  ( F  u.  { (/)
} ) )
76 elun 3641 . . . . . . . 8  |-  ( ( U. F  \  x
)  e.  ( F  u.  { (/) } )  <-> 
( ( U. F  \  x )  e.  F  \/  ( U. F  \  x )  e.  { (/)
} ) )
7775, 76sylib 196 . . . . . . 7  |-  ( x  e.  ( Clsd `  ( F  u.  { (/) } ) )  ->  ( ( U. F  \  x
)  e.  F  \/  ( U. F  \  x
)  e.  { (/) } ) )
78 elun 3641 . . . . . . . . . 10  |-  ( x  e.  ( F  u.  {
(/) } )  <->  ( x  e.  F  \/  x  e.  { (/) } ) )
79 filfbas 20474 . . . . . . . . . . . . . 14  |-  ( F  e.  ( Fil `  U. F )  ->  F  e.  ( fBas `  U. F ) )
80 fbncp 20465 . . . . . . . . . . . . . 14  |-  ( ( F  e.  ( fBas `  U. F )  /\  x  e.  F )  ->  -.  ( U. F  \  x )  e.  F
)
8179, 80sylan 471 . . . . . . . . . . . . 13  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  F )  ->  -.  ( U. F  \  x )  e.  F
)
8281pm2.21d 106 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  F )  ->  ( ( U. F  \  x )  e.  F  ->  x  =  (/) ) )
8382ex 434 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  U. F )  ->  (
x  e.  F  -> 
( ( U. F  \  x )  e.  F  ->  x  =  (/) ) ) )
8457a1d 25 . . . . . . . . . . . 12  |-  ( x  e.  { (/) }  ->  ( ( U. F  \  x )  e.  F  ->  x  =  (/) ) )
8584a1i 11 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  U. F )  ->  (
x  e.  { (/) }  ->  ( ( U. F  \  x )  e.  F  ->  x  =  (/) ) ) )
8683, 85jaod 380 . . . . . . . . . 10  |-  ( F  e.  ( Fil `  U. F )  ->  (
( x  e.  F  \/  x  e.  { (/) } )  ->  ( ( U. F  \  x
)  e.  F  ->  x  =  (/) ) ) )
8778, 86syl5bi 217 . . . . . . . . 9  |-  ( F  e.  ( Fil `  U. F )  ->  (
x  e.  ( F  u.  { (/) } )  ->  ( ( U. F  \  x )  e.  F  ->  x  =  (/) ) ) )
8887imp 429 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  ( F  u.  { (/) } ) )  ->  ( ( U. F  \  x )  e.  F  ->  x  =  (/) ) )
89 elsni 4057 . . . . . . . . 9  |-  ( ( U. F  \  x
)  e.  { (/) }  ->  ( U. F  \  x )  =  (/) )
90 elssuni 4281 . . . . . . . . . . . 12  |-  ( x  e.  ( F  u.  {
(/) } )  ->  x  C_ 
U. ( F  u.  {
(/) } ) )
9190, 21syl6sseqr 3546 . . . . . . . . . . 11  |-  ( x  e.  ( F  u.  {
(/) } )  ->  x  C_ 
U. F )
9291adantl 466 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  ( F  u.  { (/) } ) )  ->  x  C_  U. F
)
93 ssdif0 3888 . . . . . . . . . . 11  |-  ( U. F  C_  x  <->  ( U. F  \  x )  =  (/) )
9493biimpri 206 . . . . . . . . . 10  |-  ( ( U. F  \  x
)  =  (/)  ->  U. F  C_  x )
95 eqss 3514 . . . . . . . . . . 11  |-  ( x  =  U. F  <->  ( x  C_ 
U. F  /\  U. F  C_  x ) )
9695simplbi2 625 . . . . . . . . . 10  |-  ( x 
C_  U. F  ->  ( U. F  C_  x  ->  x  =  U. F ) )
9792, 94, 96syl2im 38 . . . . . . . . 9  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  ( F  u.  { (/) } ) )  ->  ( ( U. F  \  x )  =  (/)  ->  x  =  U. F ) )
9889, 97syl5 32 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  ( F  u.  { (/) } ) )  ->  ( ( U. F  \  x )  e. 
{ (/) }  ->  x  =  U. F ) )
9988, 98orim12d 838 . . . . . . 7  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  ( F  u.  { (/) } ) )  ->  ( ( ( U. F  \  x
)  e.  F  \/  ( U. F  \  x
)  e.  { (/) } )  ->  ( x  =  (/)  \/  x  = 
U. F ) ) )
10077, 99syl5 32 . . . . . 6  |-  ( ( F  e.  ( Fil `  U. F )  /\  x  e.  ( F  u.  { (/) } ) )  ->  ( x  e.  ( Clsd `  ( F  u.  { (/) } ) )  ->  ( x  =  (/)  \/  x  = 
U. F ) ) )
101100expimpd 603 . . . . 5  |-  ( F  e.  ( Fil `  U. F )  ->  (
( x  e.  ( F  u.  { (/) } )  /\  x  e.  ( Clsd `  ( F  u.  { (/) } ) ) )  ->  (
x  =  (/)  \/  x  =  U. F ) ) )
102 elin 3683 . . . . 5  |-  ( x  e.  ( ( F  u.  { (/) } )  i^i  ( Clsd `  ( F  u.  { (/) } ) ) )  <->  ( x  e.  ( F  u.  { (/)
} )  /\  x  e.  ( Clsd `  ( F  u.  { (/) } ) ) ) )
103 vex 3112 . . . . . 6  |-  x  e. 
_V
104103elpr 4050 . . . . 5  |-  ( x  e.  { (/) ,  U. F }  <->  ( x  =  (/)  \/  x  =  U. F ) )
105101, 102, 1043imtr4g 270 . . . 4  |-  ( F  e.  ( Fil `  U. F )  ->  (
x  e.  ( ( F  u.  { (/) } )  i^i  ( Clsd `  ( F  u.  { (/)
} ) ) )  ->  x  e.  { (/)
,  U. F } ) )
106105ssrdv 3505 . . 3  |-  ( F  e.  ( Fil `  U. F )  ->  (
( F  u.  { (/)
} )  i^i  ( Clsd `  ( F  u.  {
(/) } ) ) ) 
C_  { (/) ,  U. F } )
10721iscon2 20040 . . 3  |-  ( ( F  u.  { (/) } )  e.  Con  <->  ( ( F  u.  { (/) } )  e.  Top  /\  (
( F  u.  { (/)
} )  i^i  ( Clsd `  ( F  u.  {
(/) } ) ) ) 
C_  { (/) ,  U. F } ) )
10874, 106, 107sylanbrc 664 . 2  |-  ( F  e.  ( Fil `  U. F )  ->  ( F  u.  { (/) } )  e.  Con )
1094, 108syl 16 1  |-  ( F  e.  ( Fil `  X
)  ->  ( F  u.  { (/) } )  e. 
Con )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973   A.wal 1393    = wceq 1395   E.wex 1613    e. wcel 1819   A.wral 2807   _Vcvv 3109    \ cdif 3468    u. cun 3469    i^i cin 3470    C_ wss 3471   (/)c0 3793   {csn 4032   {cpr 4034   U.cuni 4251   ` cfv 5594   fBascfbas 18532   Topctop 19520   Clsdccld 19643   Conccon 20037   Filcfil 20471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-fv 5602  df-fbas 18542  df-top 19525  df-cld 19646  df-con 20038  df-fil 20472
This theorem is referenced by:  ufildr  20557
  Copyright terms: Public domain W3C validator