MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiint Structured version   Unicode version

Theorem fiint 7845
Description: Equivalent ways of stating the finite intersection property. We show two ways of saying, "the intersection of elements in every finite nonempty subcollection of  A is in  A." This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use the left-hand version of this axiom and others the right-hand version, but as our proof here shows, their "intuitively obvious" equivalence can be non-trivial to establish formally. (Contributed by NM, 22-Sep-2002.)
Assertion
Ref Expression
fiint  |-  ( A. x  e.  A  A. y  e.  A  (
x  i^i  y )  e.  A  <->  A. x ( ( x  C_  A  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  A ) )
Distinct variable group:    x, y, A

Proof of Theorem fiint
Dummy variables  z  w  v  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 7591 . . . . . . 7  |-  ( x  e.  Fin  <->  E. y  e.  om  x  ~~  y
)
2 ensym 7616 . . . . . . . . 9  |-  ( x 
~~  y  ->  y  ~~  x )
3 breq1 4420 . . . . . . . . . . . . . . . 16  |-  ( y  =  (/)  ->  ( y 
~~  x  <->  (/)  ~~  x
) )
43anbi2d 708 . . . . . . . . . . . . . . 15  |-  ( y  =  (/)  ->  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x
) ) )
54imbi1d 318 . . . . . . . . . . . . . 14  |-  ( y  =  (/)  ->  ( ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A
)  <->  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x
)  ->  |^| x  e.  A ) ) )
65albidv 1757 . . . . . . . . . . . . 13  |-  ( y  =  (/)  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A )  <->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x
)  ->  |^| x  e.  A ) ) )
7 breq1 4420 . . . . . . . . . . . . . . . 16  |-  ( y  =  v  ->  (
y  ~~  x  <->  v  ~~  x ) )
87anbi2d 708 . . . . . . . . . . . . . . 15  |-  ( y  =  v  ->  (
( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x ) ) )
98imbi1d 318 . . . . . . . . . . . . . 14  |-  ( y  =  v  ->  (
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A )  <->  ( (
( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
) ) )
109albidv 1757 . . . . . . . . . . . . 13  |-  ( y  =  v  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A )  <->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A ) ) )
11 breq1 4420 . . . . . . . . . . . . . . . 16  |-  ( y  =  suc  v  -> 
( y  ~~  x  <->  suc  v  ~~  x ) )
1211anbi2d 708 . . . . . . . . . . . . . . 15  |-  ( y  =  suc  v  -> 
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x ) ) )
1312imbi1d 318 . . . . . . . . . . . . . 14  |-  ( y  =  suc  v  -> 
( ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A )  <->  ( (
( x  C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  |^| x  e.  A
) ) )
1413albidv 1757 . . . . . . . . . . . . 13  |-  ( y  =  suc  v  -> 
( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A
)  <->  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  |^| x  e.  A
) ) )
15 ensym 7616 . . . . . . . . . . . . . . . . . . . 20  |-  ( (/)  ~~  x  ->  x  ~~  (/) )
16 en0 7630 . . . . . . . . . . . . . . . . . . . 20  |-  ( x 
~~  (/)  <->  x  =  (/) )
1715, 16sylib 199 . . . . . . . . . . . . . . . . . . 19  |-  ( (/)  ~~  x  ->  x  =  (/) )
1817anim1i 570 . . . . . . . . . . . . . . . . . 18  |-  ( (
(/)  ~~  x  /\  x  =/=  (/) )  ->  (
x  =  (/)  /\  x  =/=  (/) ) )
1918ancoms 454 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =/=  (/)  /\  (/)  ~~  x
)  ->  ( x  =  (/)  /\  x  =/=  (/) ) )
2019adantll 718 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x )  ->  (
x  =  (/)  /\  x  =/=  (/) ) )
21 df-ne 2618 . . . . . . . . . . . . . . . . 17  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
22 pm3.24 890 . . . . . . . . . . . . . . . . . 18  |-  -.  (
x  =  (/)  /\  -.  x  =  (/) )
2322pm2.21i 134 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  (/)  /\  -.  x  =  (/) )  ->  |^| x  e.  A
)
2421, 23sylan2b 477 . . . . . . . . . . . . . . . 16  |-  ( ( x  =  (/)  /\  x  =/=  (/) )  ->  |^| x  e.  A )
2520, 24syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x )  ->  |^| x  e.  A )
2625ax-gen 1665 . . . . . . . . . . . . . 14  |-  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x
)  ->  |^| x  e.  A )
2726a1i 11 . . . . . . . . . . . . 13  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  (/)  ~~  x
)  ->  |^| x  e.  A ) )
28 nfv 1751 . . . . . . . . . . . . . . 15  |-  F/ x A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A
29 nfa1 1951 . . . . . . . . . . . . . . 15  |-  F/ x A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )
30 bren 7577 . . . . . . . . . . . . . . . . . . 19  |-  ( suc  v  ~~  x  <->  E. f 
f : suc  v -1-1-onto-> x
)
31 f1of 5822 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f : suc  v -1-1-onto-> x  -> 
f : suc  v --> x )
32 vex 3081 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  v  e. 
_V
3332sucid 5512 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  v  e. 
suc  v
34 ffvelrn 6026 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( f : suc  v --> x  /\  v  e.  suc  v )  ->  (
f `  v )  e.  x )
3531, 33, 34sylancl 666 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f : suc  v -1-1-onto-> x  -> 
( f `  v
)  e.  x )
36 ssel 3455 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x 
C_  A  ->  (
( f `  v
)  e.  x  -> 
( f `  v
)  e.  A ) )
3735, 36syl5 33 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x 
C_  A  ->  (
f : suc  v -1-1-onto-> x  ->  ( f `  v
)  e.  A ) )
3837imp 430 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x )  ->  ( f `  v )  e.  A
)
3938adantr 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( f `  v
)  e.  A )
40 df-ne 2618 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f " v )  =/=  (/)  <->  -.  ( f " v )  =  (/) )
41 imassrn 5190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( f
" v )  C_  ran  f
42 dff1o2 5827 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  |-  ( f : suc  v -1-1-onto-> x  <->  ( f  Fn  suc  v  /\  Fun  `' f  /\  ran  f  =  x ) )
4342simp3bi 1022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( f : suc  v -1-1-onto-> x  ->  ran  f  =  x
)
4441, 43syl5sseq 3509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( f : suc  v -1-1-onto-> x  -> 
( f " v
)  C_  x )
45 sstr2 3468 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( f " v ) 
C_  x  ->  (
x  C_  A  ->  ( f " v ) 
C_  A ) )
4644, 45syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( f : suc  v -1-1-onto-> x  -> 
( x  C_  A  ->  ( f " v
)  C_  A )
)
4746anim1d 566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( x  C_  A  /\  ( f "
v )  =/=  (/) )  -> 
( ( f "
v )  C_  A  /\  ( f " v
)  =/=  (/) ) ) )
48 f1of1 5821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( f : suc  v -1-1-onto-> x  -> 
f : suc  v -1-1->
x )
49 vex 3081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  x  e. 
_V
50 sssucid 5510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  v  C_  suc  v
51 f1imaen2g 7628 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( ( f : suc  v -1-1-> x  /\  x  e.  _V )  /\  (
v  C_  suc  v  /\  v  e.  _V )
)  ->  ( f " v )  ~~  v )
5250, 32, 51mpanr12 689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( f : suc  v -1-1->
x  /\  x  e.  _V )  ->  ( f
" v )  ~~  v )
5348, 49, 52sylancl 666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( f : suc  v -1-1-onto-> x  -> 
( f " v
)  ~~  v )
5453ensymd 7618 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f : suc  v -1-1-onto-> x  -> 
v  ~~  ( f " v ) )
5547, 54jctird 546 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( x  C_  A  /\  ( f "
v )  =/=  (/) )  -> 
( ( ( f
" v )  C_  A  /\  ( f "
v )  =/=  (/) )  /\  v  ~~  ( f "
v ) ) ) )
56 vex 3081 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  f  e. 
_V
57 imaexg 6735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( f  e.  _V  ->  (
f " v )  e.  _V )
5856, 57ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( f
" v )  e. 
_V
59 sseq1 3482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( x  =  ( f "
v )  ->  (
x  C_  A  <->  ( f " v )  C_  A ) )
60 neeq1 2703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( x  =  ( f "
v )  ->  (
x  =/=  (/)  <->  ( f " v )  =/=  (/) ) )
6159, 60anbi12d 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( x  =  ( f "
v )  ->  (
( x  C_  A  /\  x  =/=  (/) )  <->  ( (
f " v ) 
C_  A  /\  (
f " v )  =/=  (/) ) ) )
62 breq2 4421 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( x  =  ( f "
v )  ->  (
v  ~~  x  <->  v  ~~  ( f " v
) ) )
6361, 62anbi12d 715 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( x  =  ( f "
v )  ->  (
( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  <->  ( (
( f " v
)  C_  A  /\  ( f " v
)  =/=  (/) )  /\  v  ~~  ( f "
v ) ) ) )
64 inteq 4252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( x  =  ( f "
v )  ->  |^| x  =  |^| ( f "
v ) )
6564eleq1d 2489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( x  =  ( f "
v )  ->  ( |^| x  e.  A  <->  |^| ( f " v
)  e.  A ) )
6663, 65imbi12d 321 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( x  =  ( f "
v )  ->  (
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  <->  ( (
( ( f "
v )  C_  A  /\  ( f " v
)  =/=  (/) )  /\  v  ~~  ( f "
v ) )  ->  |^| ( f " v
)  e.  A ) ) )
6758, 66spcv 3169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  (
( ( ( f
" v )  C_  A  /\  ( f "
v )  =/=  (/) )  /\  v  ~~  ( f "
v ) )  ->  |^| ( f " v
)  e.  A ) )
6855, 67sylan9 661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( f : suc  v -1-1-onto-> x  /\  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
) )  ->  (
( x  C_  A  /\  ( f " v
)  =/=  (/) )  ->  |^| ( f " v
)  e.  A ) )
69 ineq1 3654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( z  =  |^| ( f
" v )  -> 
( z  i^i  w
)  =  ( |^| ( f " v
)  i^i  w )
)
7069eleq1d 2489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( z  =  |^| ( f
" v )  -> 
( ( z  i^i  w )  e.  A  <->  (
|^| ( f "
v )  i^i  w
)  e.  A ) )
71 ineq2 3655 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( w  =  ( f `  v )  ->  ( |^| ( f " v
)  i^i  w )  =  ( |^| (
f " v )  i^i  ( f `  v ) ) )
7271eleq1d 2489 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( w  =  ( f `  v )  ->  (
( |^| ( f "
v )  i^i  w
)  e.  A  <->  ( |^| ( f " v
)  i^i  ( f `  v ) )  e.  A ) )
7370, 72rspc2v 3188 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
|^| ( f "
v )  e.  A  /\  ( f `  v
)  e.  A )  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  ( |^| ( f
" v )  i^i  ( f `  v
) )  e.  A
) )
7473ex 435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( |^| ( f " v
)  e.  A  -> 
( ( f `  v )  e.  A  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  ( |^| ( f
" v )  i^i  ( f `  v
) )  e.  A
) ) )
7568, 74syl6 34 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( f : suc  v -1-1-onto-> x  /\  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
) )  ->  (
( x  C_  A  /\  ( f " v
)  =/=  (/) )  -> 
( ( f `  v )  e.  A  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  ( |^| ( f
" v )  i^i  ( f `  v
) )  e.  A
) ) ) )
7675com4r 89 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( ( f : suc  v -1-1-onto-> x  /\  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
) )  ->  (
( x  C_  A  /\  ( f " v
)  =/=  (/) )  -> 
( ( f `  v )  e.  A  ->  ( |^| ( f
" v )  i^i  ( f `  v
) )  e.  A
) ) ) )
7776exp5c 619 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( f : suc  v -1-1-onto-> x  -> 
( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
)  ->  ( x  C_  A  ->  ( (
f " v )  =/=  (/)  ->  ( (
f `  v )  e.  A  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  e.  A ) ) ) ) ) )
7877com14 91 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( x 
C_  A  ->  (
f : suc  v -1-1-onto-> x  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
)  ->  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( ( f " v )  =/=  (/)  ->  ( (
f `  v )  e.  A  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  e.  A ) ) ) ) ) )
7978imp43 598 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( ( f "
v )  =/=  (/)  ->  (
( f `  v
)  e.  A  -> 
( |^| ( f "
v )  i^i  (
f `  v )
)  e.  A ) ) )
8040, 79syl5bir 221 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( -.  ( f
" v )  =  (/)  ->  ( ( f `
 v )  e.  A  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  e.  A ) ) )
81 inteq 4252 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( f " v )  =  (/)  ->  |^| (
f " v )  =  |^| (/) )
82 int0 4263 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  |^| (/)  =  _V
8381, 82syl6eq 2477 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( f " v )  =  (/)  ->  |^| (
f " v )  =  _V )
8483ineq1d 3660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( f " v )  =  (/)  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  =  ( _V  i^i  (
f `  v )
) )
85 ssv 3481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f `
 v )  C_  _V
86 sseqin2 3678 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( f `  v ) 
C_  _V  <->  ( _V  i^i  ( f `  v
) )  =  ( f `  v ) )
8785, 86mpbi 211 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( _V 
i^i  ( f `  v ) )  =  ( f `  v
)
8884, 87syl6eq 2477 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( f " v )  =  (/)  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  =  ( f `  v
) )
8988eleq1d 2489 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( f " v )  =  (/)  ->  ( (
|^| ( f "
v )  i^i  (
f `  v )
)  e.  A  <->  ( f `  v )  e.  A
) )
9089biimprd 226 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( f " v )  =  (/)  ->  ( ( f `  v )  e.  A  ->  ( |^| ( f " v
)  i^i  ( f `  v ) )  e.  A ) )
9180, 90pm2.61d2 163 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( ( f `  v )  e.  A  ->  ( |^| ( f
" v )  i^i  ( f `  v
) )  e.  A
) )
9239, 91mpd 15 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( |^| ( f "
v )  i^i  (
f `  v )
)  e.  A )
93 fvex 5882 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f `
 v )  e. 
_V
9493intunsn 4289 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  |^| (
( f " v
)  u.  { ( f `  v ) } )  =  (
|^| ( f "
v )  i^i  (
f `  v )
)
95 f1ofn 5823 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( f : suc  v -1-1-onto-> x  -> 
f  Fn  suc  v
)
96 fnsnfv 5932 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( f  Fn  suc  v  /\  v  e.  suc  v )  ->  { ( f `  v ) }  =  ( f
" { v } ) )
9795, 33, 96sylancl 666 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f : suc  v -1-1-onto-> x  ->  { ( f `  v ) }  =  ( f " {
v } ) )
9897uneq2d 3617 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( f "
v )  u.  {
( f `  v
) } )  =  ( ( f "
v )  u.  (
f " { v } ) ) )
99 df-suc 5439 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  suc  v  =  ( v  u. 
{ v } )
10099imaeq2i 5177 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f
" suc  v )  =  ( f "
( v  u.  {
v } ) )
101 imaundi 5259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( f
" ( v  u. 
{ v } ) )  =  ( ( f " v )  u.  ( f " { v } ) )
102100, 101eqtr2i 2450 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( f " v )  u.  ( f " { v } ) )  =  ( f
" suc  v )
10398, 102syl6eq 2477 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( f "
v )  u.  {
( f `  v
) } )  =  ( f " suc  v ) )
104 f1ofo 5829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f : suc  v -1-1-onto-> x  -> 
f : suc  v -onto->
x )
105 foima 5806 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( f : suc  v -onto-> x  ->  ( f " suc  v )  =  x )
106104, 105syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( f : suc  v -1-1-onto-> x  -> 
( f " suc  v )  =  x )
107103, 106eqtrd 2461 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( f "
v )  u.  {
( f `  v
) } )  =  x )
108107inteqd 4254 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( f : suc  v -1-1-onto-> x  ->  |^| ( ( f "
v )  u.  {
( f `  v
) } )  = 
|^| x )
10994, 108syl5eqr 2475 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( f : suc  v -1-1-onto-> x  -> 
( |^| ( f "
v )  i^i  (
f `  v )
)  =  |^| x
)
110109eleq1d 2489 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( f : suc  v -1-1-onto-> x  -> 
( ( |^| (
f " v )  i^i  ( f `  v ) )  e.  A  <->  |^| x  e.  A
) )
111110ad2antlr 731 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  -> 
( ( |^| (
f " v )  i^i  ( f `  v ) )  e.  A  <->  |^| x  e.  A
) )
11292, 111mpbid 213 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( x  C_  A  /\  f : suc  v -1-1-onto-> x
)  /\  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  /\  A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A ) )  ->  |^| x  e.  A
)
113112exp43 615 . . . . . . . . . . . . . . . . . . . 20  |-  ( x 
C_  A  ->  (
f : suc  v -1-1-onto-> x  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
)  ->  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  |^| x  e.  A ) ) ) )
114113exlimdv 1768 . . . . . . . . . . . . . . . . . . 19  |-  ( x 
C_  A  ->  ( E. f  f : suc  v -1-1-onto-> x  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  ->  |^| x  e.  A
) ) ) )
11530, 114syl5bi 220 . . . . . . . . . . . . . . . . . 18  |-  ( x 
C_  A  ->  ( suc  v  ~~  x  -> 
( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
)  ->  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  |^| x  e.  A ) ) ) )
116115imp 430 . . . . . . . . . . . . . . . . 17  |-  ( ( x  C_  A  /\  suc  v  ~~  x )  ->  ( A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  ->  |^| x  e.  A
) ) )
117116adantlr 719 . . . . . . . . . . . . . . . 16  |-  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  ( A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  ->  |^| x  e.  A
) ) )
118117com13 83 . . . . . . . . . . . . . . 15  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  (
( ( x  C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  |^| x  e.  A
) ) )
11928, 29, 118alrimd 1931 . . . . . . . . . . . . . 14  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A )  ->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  |^| x  e.  A
) ) )
120119a1i 11 . . . . . . . . . . . . 13  |-  ( v  e.  om  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  -> 
( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  v  ~~  x )  ->  |^| x  e.  A
)  ->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  suc  v  ~~  x )  ->  |^| x  e.  A
) ) ) )
1216, 10, 14, 27, 120finds2 6726 . . . . . . . . . . . 12  |-  ( y  e.  om  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  ->  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A ) ) )
122 sp 1909 . . . . . . . . . . . 12  |-  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A )  ->  (
( ( x  C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A
) )
123121, 122syl6 34 . . . . . . . . . . 11  |-  ( y  e.  om  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  -> 
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  y  ~~  x )  ->  |^| x  e.  A ) ) )
124123exp4a 609 . . . . . . . . . 10  |-  ( y  e.  om  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  -> 
( ( x  C_  A  /\  x  =/=  (/) )  -> 
( y  ~~  x  ->  |^| x  e.  A
) ) ) )
125124com24 90 . . . . . . . . 9  |-  ( y  e.  om  ->  (
y  ~~  x  ->  ( ( x  C_  A  /\  x  =/=  (/) )  -> 
( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  |^| x  e.  A
) ) ) )
1262, 125syl5 33 . . . . . . . 8  |-  ( y  e.  om  ->  (
x  ~~  y  ->  ( ( x  C_  A  /\  x  =/=  (/) )  -> 
( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  |^| x  e.  A
) ) ) )
127126rexlimiv 2909 . . . . . . 7  |-  ( E. y  e.  om  x  ~~  y  ->  ( ( x  C_  A  /\  x  =/=  (/) )  ->  ( A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A  ->  |^| x  e.  A
) ) )
1281, 127sylbi 198 . . . . . 6  |-  ( x  e.  Fin  ->  (
( x  C_  A  /\  x  =/=  (/) )  -> 
( A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A  ->  |^| x  e.  A
) ) )
129128com13 83 . . . . 5  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( ( x  C_  A  /\  x  =/=  (/) )  ->  (
x  e.  Fin  ->  |^| x  e.  A ) ) )
130129impd 432 . . . 4  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A
) )
131130alrimiv 1763 . . 3  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  ->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A ) )
132 zfpair2 4653 . . . . . 6  |-  { z ,  w }  e.  _V
133 sseq1 3482 . . . . . . . . 9  |-  ( x  =  { z ,  w }  ->  (
x  C_  A  <->  { z ,  w }  C_  A
) )
134 neeq1 2703 . . . . . . . . 9  |-  ( x  =  { z ,  w }  ->  (
x  =/=  (/)  <->  { z ,  w }  =/=  (/) ) )
135133, 134anbi12d 715 . . . . . . . 8  |-  ( x  =  { z ,  w }  ->  (
( x  C_  A  /\  x  =/=  (/) )  <->  ( {
z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) ) ) )
136 eleq1 2492 . . . . . . . 8  |-  ( x  =  { z ,  w }  ->  (
x  e.  Fin  <->  { z ,  w }  e.  Fin ) )
137135, 136anbi12d 715 . . . . . . 7  |-  ( x  =  { z ,  w }  ->  (
( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  <->  ( ( { z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) )  /\  {
z ,  w }  e.  Fin ) ) )
138 inteq 4252 . . . . . . . 8  |-  ( x  =  { z ,  w }  ->  |^| x  =  |^| { z ,  w } )
139138eleq1d 2489 . . . . . . 7  |-  ( x  =  { z ,  w }  ->  ( |^| x  e.  A  <->  |^|
{ z ,  w }  e.  A )
)
140137, 139imbi12d 321 . . . . . 6  |-  ( x  =  { z ,  w }  ->  (
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A )  <->  ( (
( { z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) )  /\  {
z ,  w }  e.  Fin )  ->  |^| { z ,  w }  e.  A ) ) )
141132, 140spcv 3169 . . . . 5  |-  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A )  ->  (
( ( { z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) )  /\  { z ,  w }  e.  Fin )  ->  |^| { z ,  w }  e.  A ) )
142 vex 3081 . . . . . . 7  |-  z  e. 
_V
143 vex 3081 . . . . . . 7  |-  w  e. 
_V
144142, 143prss 4148 . . . . . 6  |-  ( ( z  e.  A  /\  w  e.  A )  <->  { z ,  w }  C_  A )
145142prnz 4113 . . . . . . 7  |-  { z ,  w }  =/=  (/)
146145biantru 507 . . . . . 6  |-  ( { z ,  w }  C_  A  <->  ( { z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) ) )
147 prfi 7843 . . . . . . 7  |-  { z ,  w }  e.  Fin
148147biantru 507 . . . . . 6  |-  ( ( { z ,  w }  C_  A  /\  {
z ,  w }  =/=  (/) )  <->  ( ( { z ,  w }  C_  A  /\  {
z ,  w }  =/=  (/) )  /\  {
z ,  w }  e.  Fin ) )
149144, 146, 1483bitrri 275 . . . . 5  |-  ( ( ( { z ,  w }  C_  A  /\  { z ,  w }  =/=  (/) )  /\  {
z ,  w }  e.  Fin )  <->  ( z  e.  A  /\  w  e.  A ) )
150142, 143intpr 4283 . . . . . 6  |-  |^| { z ,  w }  =  ( z  i^i  w
)
151150eleq1i 2497 . . . . 5  |-  ( |^| { z ,  w }  e.  A  <->  ( z  i^i  w )  e.  A
)
152141, 149, 1513imtr3g 272 . . . 4  |-  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A )  ->  (
( z  e.  A  /\  w  e.  A
)  ->  ( z  i^i  w )  e.  A
) )
153152ralrimivv 2843 . . 3  |-  ( A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A )  ->  A. z  e.  A  A. w  e.  A  ( z  i^i  w )  e.  A
)
154131, 153impbii 190 . 2  |-  ( A. z  e.  A  A. w  e.  A  (
z  i^i  w )  e.  A  <->  A. x ( ( ( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A
) )
155 ineq1 3654 . . . 4  |-  ( x  =  z  ->  (
x  i^i  y )  =  ( z  i^i  y ) )
156155eleq1d 2489 . . 3  |-  ( x  =  z  ->  (
( x  i^i  y
)  e.  A  <->  ( z  i^i  y )  e.  A
) )
157 ineq2 3655 . . . 4  |-  ( y  =  w  ->  (
z  i^i  y )  =  ( z  i^i  w ) )
158157eleq1d 2489 . . 3  |-  ( y  =  w  ->  (
( z  i^i  y
)  e.  A  <->  ( z  i^i  w )  e.  A
) )
159156, 158cbvral2v 3061 . 2  |-  ( A. x  e.  A  A. y  e.  A  (
x  i^i  y )  e.  A  <->  A. z  e.  A  A. w  e.  A  ( z  i^i  w
)  e.  A )
160 df-3an 984 . . . 4  |-  ( ( x  C_  A  /\  x  =/=  (/)  /\  x  e. 
Fin )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin ) )
161160imbi1i 326 . . 3  |-  ( ( ( x  C_  A  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  A )  <->  ( (
( x  C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A
) )
162161albii 1687 . 2  |-  ( A. x ( ( x 
C_  A  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  A )  <->  A. x
( ( ( x 
C_  A  /\  x  =/=  (/) )  /\  x  e.  Fin )  ->  |^| x  e.  A ) )
163154, 159, 1623bitr4i 280 1  |-  ( A. x  e.  A  A. y  e.  A  (
x  i^i  y )  e.  A  <->  A. x ( ( x  C_  A  /\  x  =/=  (/)  /\  x  e. 
Fin )  ->  |^| x  e.  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982   A.wal 1435    = wceq 1437   E.wex 1659    e. wcel 1867    =/= wne 2616   A.wral 2773   E.wrex 2774   _Vcvv 3078    u. cun 3431    i^i cin 3432    C_ wss 3433   (/)c0 3758   {csn 3993   {cpr 3995   |^|cint 4249   class class class wbr 4417   `'ccnv 4844   ran crn 4846   "cima 4848   suc csuc 5435   Fun wfun 5586    Fn wfn 5587   -->wf 5588   -1-1->wf1 5589   -onto->wfo 5590   -1-1-onto->wf1o 5591   ` cfv 5592   omcom 6697    ~~ cen 7565   Fincfn 7568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-8 1869  ax-9 1871  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398  ax-sep 4539  ax-nul 4547  ax-pow 4594  ax-pr 4652  ax-un 6588
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2267  df-mo 2268  df-clab 2406  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ne 2618  df-ral 2778  df-rex 2779  df-reu 2780  df-rab 2782  df-v 3080  df-sbc 3297  df-csb 3393  df-dif 3436  df-un 3438  df-in 3440  df-ss 3447  df-pss 3449  df-nul 3759  df-if 3907  df-pw 3978  df-sn 3994  df-pr 3996  df-tp 3998  df-op 4000  df-uni 4214  df-int 4250  df-iun 4295  df-br 4418  df-opab 4476  df-mpt 4477  df-tr 4512  df-eprel 4756  df-id 4760  df-po 4766  df-so 4767  df-fr 4804  df-we 4806  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-pred 5390  df-ord 5436  df-on 5437  df-lim 5438  df-suc 5439  df-iota 5556  df-fun 5594  df-fn 5595  df-f 5596  df-f1 5597  df-fo 5598  df-f1o 5599  df-fv 5600  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6698  df-wrecs 7027  df-recs 7089  df-rdg 7127  df-1o 7181  df-oadd 7185  df-er 7362  df-en 7569  df-fin 7572
This theorem is referenced by:  dffi2  7934  istop2g  19850  neificl  31786
  Copyright terms: Public domain W3C validator