MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiinfnf1o Structured version   Visualization version   Unicode version

Theorem fiinfnf1o 12571
Description: There is no bijection between a finite set and an infinite set. (Contributed by Alexander van der Vekens, 25-Dec-2017.)
Assertion
Ref Expression
fiinfnf1o  |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  -.  E. f 
f : A -1-1-onto-> B )
Distinct variable groups:    A, f    B, f

Proof of Theorem fiinfnf1o
StepHypRef Expression
1 f1ofo 5835 . . . 4  |-  ( f : A -1-1-onto-> B  ->  f : A -onto-> B )
2 fofi 7878 . . . . 5  |-  ( ( A  e.  Fin  /\  f : A -onto-> B )  ->  B  e.  Fin )
32ex 441 . . . 4  |-  ( A  e.  Fin  ->  (
f : A -onto-> B  ->  B  e.  Fin )
)
41, 3syl5 32 . . 3  |-  ( A  e.  Fin  ->  (
f : A -1-1-onto-> B  ->  B  e.  Fin )
)
54exlimdv 1787 . 2  |-  ( A  e.  Fin  ->  ( E. f  f : A
-1-1-onto-> B  ->  B  e.  Fin ) )
65con3dimp 448 1  |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  -.  E. f 
f : A -1-1-onto-> B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376   E.wex 1671    e. wcel 1904   -onto->wfo 5587   -1-1-onto->wf1o 5588   Fincfn 7587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-om 6712  df-1o 7200  df-er 7381  df-en 7588  df-dom 7589  df-fin 7591
This theorem is referenced by:  hasheqf1oi  12572
  Copyright terms: Public domain W3C validator