MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fiin Structured version   Visualization version   Unicode version

Theorem fiin 7954
Description: The elements of  ( fi
`  C ) are closed under finite intersection. (Contributed by Mario Carneiro, 24-Nov-2013.)
Assertion
Ref Expression
fiin  |-  ( ( A  e.  ( fi
`  C )  /\  B  e.  ( fi `  C ) )  -> 
( A  i^i  B
)  e.  ( fi
`  C ) )

Proof of Theorem fiin
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvex 5906 . . . . . 6  |-  ( A  e.  ( fi `  C )  ->  C  e.  _V )
2 elfi 7945 . . . . . 6  |-  ( ( A  e.  ( fi
`  C )  /\  C  e.  _V )  ->  ( A  e.  ( fi `  C )  <->  E. x  e.  ( ~P C  i^i  Fin ) A  =  |^| x ) )
31, 2mpdan 681 . . . . 5  |-  ( A  e.  ( fi `  C )  ->  ( A  e.  ( fi `  C )  <->  E. x  e.  ( ~P C  i^i  Fin ) A  =  |^| x ) )
43ibi 249 . . . 4  |-  ( A  e.  ( fi `  C )  ->  E. x  e.  ( ~P C  i^i  Fin ) A  =  |^| x )
54adantr 472 . . 3  |-  ( ( A  e.  ( fi
`  C )  /\  B  e.  ( fi `  C ) )  ->  E. x  e.  ( ~P C  i^i  Fin ) A  =  |^| x )
6 simpr 468 . . . 4  |-  ( ( A  e.  ( fi
`  C )  /\  B  e.  ( fi `  C ) )  ->  B  e.  ( fi `  C ) )
7 elfi 7945 . . . . . 6  |-  ( ( B  e.  ( fi
`  C )  /\  C  e.  _V )  ->  ( B  e.  ( fi `  C )  <->  E. y  e.  ( ~P C  i^i  Fin ) B  =  |^| y ) )
87ancoms 460 . . . . 5  |-  ( ( C  e.  _V  /\  B  e.  ( fi `  C ) )  -> 
( B  e.  ( fi `  C )  <->  E. y  e.  ( ~P C  i^i  Fin ) B  =  |^| y ) )
91, 8sylan 479 . . . 4  |-  ( ( A  e.  ( fi
`  C )  /\  B  e.  ( fi `  C ) )  -> 
( B  e.  ( fi `  C )  <->  E. y  e.  ( ~P C  i^i  Fin ) B  =  |^| y ) )
106, 9mpbid 215 . . 3  |-  ( ( A  e.  ( fi
`  C )  /\  B  e.  ( fi `  C ) )  ->  E. y  e.  ( ~P C  i^i  Fin ) B  =  |^| y )
11 elin 3608 . . . . . . . . 9  |-  ( x  e.  ( ~P C  i^i  Fin )  <->  ( x  e.  ~P C  /\  x  e.  Fin ) )
12 elin 3608 . . . . . . . . 9  |-  ( y  e.  ( ~P C  i^i  Fin )  <->  ( y  e.  ~P C  /\  y  e.  Fin ) )
13 elpwi 3951 . . . . . . . . . . . . . 14  |-  ( x  e.  ~P C  ->  x  C_  C )
14 elpwi 3951 . . . . . . . . . . . . . 14  |-  ( y  e.  ~P C  -> 
y  C_  C )
1513, 14anim12i 576 . . . . . . . . . . . . 13  |-  ( ( x  e.  ~P C  /\  y  e.  ~P C )  ->  (
x  C_  C  /\  y  C_  C ) )
16 unss 3599 . . . . . . . . . . . . 13  |-  ( ( x  C_  C  /\  y  C_  C )  <->  ( x  u.  y )  C_  C
)
1715, 16sylib 201 . . . . . . . . . . . 12  |-  ( ( x  e.  ~P C  /\  y  e.  ~P C )  ->  (
x  u.  y ) 
C_  C )
18 vex 3034 . . . . . . . . . . . . . 14  |-  x  e. 
_V
19 vex 3034 . . . . . . . . . . . . . 14  |-  y  e. 
_V
2018, 19unex 6608 . . . . . . . . . . . . 13  |-  ( x  u.  y )  e. 
_V
2120elpw 3948 . . . . . . . . . . . 12  |-  ( ( x  u.  y )  e.  ~P C  <->  ( x  u.  y )  C_  C
)
2217, 21sylibr 217 . . . . . . . . . . 11  |-  ( ( x  e.  ~P C  /\  y  e.  ~P C )  ->  (
x  u.  y )  e.  ~P C )
23 unfi 7856 . . . . . . . . . . 11  |-  ( ( x  e.  Fin  /\  y  e.  Fin )  ->  ( x  u.  y
)  e.  Fin )
2422, 23anim12i 576 . . . . . . . . . 10  |-  ( ( ( x  e.  ~P C  /\  y  e.  ~P C )  /\  (
x  e.  Fin  /\  y  e.  Fin )
)  ->  ( (
x  u.  y )  e.  ~P C  /\  ( x  u.  y
)  e.  Fin )
)
2524an4s 842 . . . . . . . . 9  |-  ( ( ( x  e.  ~P C  /\  x  e.  Fin )  /\  ( y  e. 
~P C  /\  y  e.  Fin ) )  -> 
( ( x  u.  y )  e.  ~P C  /\  ( x  u.  y )  e.  Fin ) )
2611, 12, 25syl2anb 487 . . . . . . . 8  |-  ( ( x  e.  ( ~P C  i^i  Fin )  /\  y  e.  ( ~P C  i^i  Fin )
)  ->  ( (
x  u.  y )  e.  ~P C  /\  ( x  u.  y
)  e.  Fin )
)
27 elin 3608 . . . . . . . 8  |-  ( ( x  u.  y )  e.  ( ~P C  i^i  Fin )  <->  ( (
x  u.  y )  e.  ~P C  /\  ( x  u.  y
)  e.  Fin )
)
2826, 27sylibr 217 . . . . . . 7  |-  ( ( x  e.  ( ~P C  i^i  Fin )  /\  y  e.  ( ~P C  i^i  Fin )
)  ->  ( x  u.  y )  e.  ( ~P C  i^i  Fin ) )
29 ineq12 3620 . . . . . . . 8  |-  ( ( A  =  |^| x  /\  B  =  |^| y )  ->  ( A  i^i  B )  =  ( |^| x  i^i  |^| y ) )
30 intun 4258 . . . . . . . 8  |-  |^| (
x  u.  y )  =  ( |^| x  i^i  |^| y )
3129, 30syl6eqr 2523 . . . . . . 7  |-  ( ( A  =  |^| x  /\  B  =  |^| y )  ->  ( A  i^i  B )  = 
|^| ( x  u.  y ) )
32 inteq 4229 . . . . . . . . 9  |-  ( z  =  ( x  u.  y )  ->  |^| z  =  |^| ( x  u.  y ) )
3332eqeq2d 2481 . . . . . . . 8  |-  ( z  =  ( x  u.  y )  ->  (
( A  i^i  B
)  =  |^| z  <->  ( A  i^i  B )  =  |^| ( x  u.  y ) ) )
3433rspcev 3136 . . . . . . 7  |-  ( ( ( x  u.  y
)  e.  ( ~P C  i^i  Fin )  /\  ( A  i^i  B
)  =  |^| (
x  u.  y ) )  ->  E. z  e.  ( ~P C  i^i  Fin ) ( A  i^i  B )  =  |^| z
)
3528, 31, 34syl2an 485 . . . . . 6  |-  ( ( ( x  e.  ( ~P C  i^i  Fin )  /\  y  e.  ( ~P C  i^i  Fin ) )  /\  ( A  =  |^| x  /\  B  =  |^| y ) )  ->  E. z  e.  ( ~P C  i^i  Fin ) ( A  i^i  B )  =  |^| z
)
3635an4s 842 . . . . 5  |-  ( ( ( x  e.  ( ~P C  i^i  Fin )  /\  A  =  |^| x )  /\  (
y  e.  ( ~P C  i^i  Fin )  /\  B  =  |^| y ) )  ->  E. z  e.  ( ~P C  i^i  Fin )
( A  i^i  B
)  =  |^| z
)
3736rexlimdvaa 2872 . . . 4  |-  ( ( x  e.  ( ~P C  i^i  Fin )  /\  A  =  |^| x )  ->  ( E. y  e.  ( ~P C  i^i  Fin ) B  =  |^| y  ->  E. z  e.  ( ~P C  i^i  Fin )
( A  i^i  B
)  =  |^| z
) )
3837rexlimiva 2868 . . 3  |-  ( E. x  e.  ( ~P C  i^i  Fin ) A  =  |^| x  -> 
( E. y  e.  ( ~P C  i^i  Fin ) B  =  |^| y  ->  E. z  e.  ( ~P C  i^i  Fin ) ( A  i^i  B )  =  |^| z
) )
395, 10, 38sylc 61 . 2  |-  ( ( A  e.  ( fi
`  C )  /\  B  e.  ( fi `  C ) )  ->  E. z  e.  ( ~P C  i^i  Fin )
( A  i^i  B
)  =  |^| z
)
40 inex1g 4539 . . . 4  |-  ( A  e.  ( fi `  C )  ->  ( A  i^i  B )  e. 
_V )
41 elfi 7945 . . . 4  |-  ( ( ( A  i^i  B
)  e.  _V  /\  C  e.  _V )  ->  ( ( A  i^i  B )  e.  ( fi
`  C )  <->  E. z  e.  ( ~P C  i^i  Fin ) ( A  i^i  B )  =  |^| z
) )
4240, 1, 41syl2anc 673 . . 3  |-  ( A  e.  ( fi `  C )  ->  (
( A  i^i  B
)  e.  ( fi
`  C )  <->  E. z  e.  ( ~P C  i^i  Fin ) ( A  i^i  B )  =  |^| z
) )
4342adantr 472 . 2  |-  ( ( A  e.  ( fi
`  C )  /\  B  e.  ( fi `  C ) )  -> 
( ( A  i^i  B )  e.  ( fi
`  C )  <->  E. z  e.  ( ~P C  i^i  Fin ) ( A  i^i  B )  =  |^| z
) )
4439, 43mpbird 240 1  |-  ( ( A  e.  ( fi
`  C )  /\  B  e.  ( fi `  C ) )  -> 
( A  i^i  B
)  e.  ( fi
`  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   E.wrex 2757   _Vcvv 3031    u. cun 3388    i^i cin 3389    C_ wss 3390   ~Pcpw 3942   |^|cint 4226   ` cfv 5589   Fincfn 7587   ficfi 7942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-oadd 7204  df-er 7381  df-en 7588  df-fin 7591  df-fi 7943
This theorem is referenced by:  dffi2  7955  inficl  7957  elfiun  7962  dffi3  7963  fibas  20070  ordtbas2  20284  fsubbas  20960
  Copyright terms: Public domain W3C validator