MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fifo Structured version   Unicode version

Theorem fifo 7952
Description: Describe a surjection from nonempty finite sets to finite intersections. (Contributed by Mario Carneiro, 18-May-2015.)
Hypothesis
Ref Expression
fifo.1  |-  F  =  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  |->  |^| y )
Assertion
Ref Expression
fifo  |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A ) )
Distinct variable groups:    y, A    y, V
Allowed substitution hint:    F( y)

Proof of Theorem fifo
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eldifsni 4129 . . . . . 6  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  -> 
y  =/=  (/) )
2 intex 4581 . . . . . 6  |-  ( y  =/=  (/)  <->  |^| y  e.  _V )
31, 2sylib 199 . . . . 5  |-  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  ->  |^| y  e.  _V )
43rgen 2792 . . . 4  |-  A. y  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) |^| y  e.  _V
5 fifo.1 . . . . 5  |-  F  =  ( y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } )  |->  |^| y )
65fnmpt 5722 . . . 4  |-  ( A. y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } ) |^| y  e.  _V  ->  F  Fn  ( ( ~P A  i^i  Fin )  \  { (/) } ) )
74, 6mp1i 13 . . 3  |-  ( A  e.  V  ->  F  Fn  ( ( ~P A  i^i  Fin )  \  { (/)
} ) )
8 dffn4 5816 . . 3  |-  ( F  Fn  ( ( ~P A  i^i  Fin )  \  { (/) } )  <->  F :
( ( ~P A  i^i  Fin )  \  { (/)
} ) -onto-> ran  F
)
97, 8sylib 199 . 2  |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ran 
F )
10 elfi2 7934 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  ( fi
`  A )  <->  E. y  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) x  = 
|^| y ) )
11 vex 3090 . . . . . 6  |-  x  e. 
_V
125elrnmpt 5101 . . . . . 6  |-  ( x  e.  _V  ->  (
x  e.  ran  F  <->  E. y  e.  ( ( ~P A  i^i  Fin )  \  { (/) } ) x  =  |^| y
) )
1311, 12ax-mp 5 . . . . 5  |-  ( x  e.  ran  F  <->  E. y  e.  ( ( ~P A  i^i  Fin )  \  { (/)
} ) x  = 
|^| y )
1410, 13syl6bbr 266 . . . 4  |-  ( A  e.  V  ->  (
x  e.  ( fi
`  A )  <->  x  e.  ran  F ) )
1514eqrdv 2426 . . 3  |-  ( A  e.  V  ->  ( fi `  A )  =  ran  F )
16 foeq3 5808 . . 3  |-  ( ( fi `  A )  =  ran  F  -> 
( F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A )  <->  F :
( ( ~P A  i^i  Fin )  \  { (/)
} ) -onto-> ran  F
) )
1715, 16syl 17 . 2  |-  ( A  e.  V  ->  ( F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A )  <-> 
F : ( ( ~P A  i^i  Fin )  \  { (/) } )
-onto->
ran  F ) )
189, 17mpbird 235 1  |-  ( A  e.  V  ->  F : ( ( ~P A  i^i  Fin )  \  { (/) } ) -onto-> ( fi `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    = wceq 1437    e. wcel 1870    =/= wne 2625   A.wral 2782   E.wrex 2783   _Vcvv 3087    \ cdif 3439    i^i cin 3441   (/)c0 3767   ~Pcpw 3985   {csn 4002   |^|cint 4258    |-> cmpt 4484   ran crn 4855    Fn wfn 5596   -onto->wfo 5599   ` cfv 5601   Fincfn 7577   ficfi 7930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-sbc 3306  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-int 4259  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-iota 5565  df-fun 5603  df-fn 5604  df-fo 5607  df-fv 5609  df-fi 7931
This theorem is referenced by:  inffien  8492  fictb  8673
  Copyright terms: Public domain W3C validator