MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgtr Structured version   Unicode version

Theorem fgtr 20154
Description: If  A is a member of the filter, then truncating  F to  A and regenerating the behavior outside  A using 
filGen recovers the original filter. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgtr  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  =  F )

Proof of Theorem fgtr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 filfbas 20112 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
2 fbncp 20103 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  X )  /\  A  e.  F )  ->  -.  ( X  \  A )  e.  F )
31, 2sylan 471 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  -.  ( X  \  A )  e.  F )
4 filelss 20116 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  A  C_  X )
5 trfil3 20152 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  C_  X )  ->  (
( Ft  A )  e.  ( Fil `  A )  <->  -.  ( X  \  A
)  e.  F ) )
64, 5syldan 470 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
( Ft  A )  e.  ( Fil `  A )  <->  -.  ( X  \  A
)  e.  F ) )
73, 6mpbird 232 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  e.  ( Fil `  A ) )
8 filfbas 20112 . . . . . 6  |-  ( ( Ft  A )  e.  ( Fil `  A )  ->  ( Ft  A )  e.  ( fBas `  A
) )
97, 8syl 16 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  e.  (
fBas `  A )
)
10 restsspw 14687 . . . . . 6  |-  ( Ft  A )  C_  ~P A
11 sspwb 4696 . . . . . . 7  |-  ( A 
C_  X  <->  ~P A  C_ 
~P X )
124, 11sylib 196 . . . . . 6  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ~P A  C_  ~P X )
1310, 12syl5ss 3515 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  C_  ~P X )
14 filtop 20119 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  X  e.  F )
1514adantr 465 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  X  e.  F )
16 fbasweak 20129 . . . . 5  |-  ( ( ( Ft  A )  e.  (
fBas `  A )  /\  ( Ft  A )  C_  ~P X  /\  X  e.  F
)  ->  ( Ft  A
)  e.  ( fBas `  X ) )
179, 13, 15, 16syl3anc 1228 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  e.  (
fBas `  X )
)
181adantr 465 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  F  e.  ( fBas `  X
) )
19 trfilss 20153 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( Ft  A )  C_  F
)
20 fgss 20137 . . . 4  |-  ( ( ( Ft  A )  e.  (
fBas `  X )  /\  F  e.  ( fBas `  X )  /\  ( Ft  A )  C_  F
)  ->  ( X filGen ( Ft  A ) )  C_  ( X filGen F ) )
2117, 18, 19, 20syl3anc 1228 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  C_  ( X filGen F ) )
22 fgfil 20139 . . . 4  |-  ( F  e.  ( Fil `  X
)  ->  ( X filGen F )  =  F )
2322adantr 465 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen F )  =  F )
2421, 23sseqtrd 3540 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  C_  F )
25 filelss 20116 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  x  e.  F )  ->  x  C_  X )
2625ex 434 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  x  C_  X ) )
2726adantr 465 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  ->  x  C_  X ) )
28 elrestr 14684 . . . . . . . 8  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F  /\  x  e.  F )  ->  (
x  i^i  A )  e.  ( Ft  A ) )
29283expa 1196 . . . . . . 7  |-  ( ( ( F  e.  ( Fil `  X )  /\  A  e.  F
)  /\  x  e.  F )  ->  (
x  i^i  A )  e.  ( Ft  A ) )
30 inss1 3718 . . . . . . 7  |-  ( x  i^i  A )  C_  x
31 sseq1 3525 . . . . . . . 8  |-  ( y  =  ( x  i^i 
A )  ->  (
y  C_  x  <->  ( x  i^i  A )  C_  x
) )
3231rspcev 3214 . . . . . . 7  |-  ( ( ( x  i^i  A
)  e.  ( Ft  A )  /\  ( x  i^i  A )  C_  x )  ->  E. y  e.  ( Ft  A ) y  C_  x )
3329, 30, 32sylancl 662 . . . . . 6  |-  ( ( ( F  e.  ( Fil `  X )  /\  A  e.  F
)  /\  x  e.  F )  ->  E. y  e.  ( Ft  A ) y  C_  x )
3433ex 434 . . . . 5  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  ->  E. y  e.  ( Ft  A ) y  C_  x ) )
3527, 34jcad 533 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  -> 
( x  C_  X  /\  E. y  e.  ( Ft  A ) y  C_  x ) ) )
36 elfg 20135 . . . . 5  |-  ( ( Ft  A )  e.  (
fBas `  X )  ->  ( x  e.  ( X filGen ( Ft  A ) )  <->  ( x  C_  X  /\  E. y  e.  ( Ft  A ) y  C_  x ) ) )
3717, 36syl 16 . . . 4  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  ( X
filGen ( Ft  A ) )  <->  ( x  C_  X  /\  E. y  e.  ( Ft  A ) y  C_  x ) ) )
3835, 37sylibrd 234 . . 3  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  (
x  e.  F  ->  x  e.  ( X filGen ( Ft  A ) ) ) )
3938ssrdv 3510 . 2  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  F  C_  ( X filGen ( Ft  A ) ) )
4024, 39eqssd 3521 1  |-  ( ( F  e.  ( Fil `  X )  /\  A  e.  F )  ->  ( X filGen ( Ft  A ) )  =  F )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815    \ cdif 3473    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   ` cfv 5588  (class class class)co 6284   ↾t crest 14676   fBascfbas 18205   filGencfg 18206   Filcfil 20109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-1st 6784  df-2nd 6785  df-rest 14678  df-fbas 18215  df-fg 18216  df-fil 20110
This theorem is referenced by:  cfilres  21498
  Copyright terms: Public domain W3C validator