MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgss2 Structured version   Unicode version

Theorem fgss2 20110
Description: A condition for a filter to be finer than another involving their filter bases. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgss2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( X filGen F ) 
C_  ( X filGen G )  <->  A. x  e.  F  E. y  e.  G  y  C_  x ) )
Distinct variable groups:    x, y, F    x, G, y    x, X, y

Proof of Theorem fgss2
Dummy variables  u  t  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssfg 20108 . . . . . 6  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
21adantr 465 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  F  C_  ( X filGen F ) )
32sseld 3503 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
x  e.  F  ->  x  e.  ( X filGen F ) ) )
4 ssel2 3499 . . . . . 6  |-  ( ( ( X filGen F ) 
C_  ( X filGen G )  /\  x  e.  ( X filGen F ) )  ->  x  e.  ( X filGen G ) )
5 elfg 20107 . . . . . . . 8  |-  ( G  e.  ( fBas `  X
)  ->  ( x  e.  ( X filGen G )  <-> 
( x  C_  X  /\  E. y  e.  G  y  C_  x ) ) )
6 simpr 461 . . . . . . . 8  |-  ( ( x  C_  X  /\  E. y  e.  G  y 
C_  x )  ->  E. y  e.  G  y  C_  x )
75, 6syl6bi 228 . . . . . . 7  |-  ( G  e.  ( fBas `  X
)  ->  ( x  e.  ( X filGen G )  ->  E. y  e.  G  y  C_  x ) )
87adantl 466 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
x  e.  ( X
filGen G )  ->  E. y  e.  G  y  C_  x ) )
94, 8syl5 32 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( ( X filGen F )  C_  ( X filGen G )  /\  x  e.  ( X filGen F ) )  ->  E. y  e.  G  y  C_  x ) )
109expd 436 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( X filGen F ) 
C_  ( X filGen G )  ->  ( x  e.  ( X filGen F )  ->  E. y  e.  G  y  C_  x ) ) )
113, 10syl5d 67 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( X filGen F ) 
C_  ( X filGen G )  ->  ( x  e.  F  ->  E. y  e.  G  y  C_  x ) ) )
1211ralrimdv 2880 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( X filGen F ) 
C_  ( X filGen G )  ->  A. x  e.  F  E. y  e.  G  y  C_  x ) )
13 sseq2 3526 . . . . . . . . . . . . 13  |-  ( x  =  u  ->  (
y  C_  x  <->  y  C_  u ) )
1413rexbidv 2973 . . . . . . . . . . . 12  |-  ( x  =  u  ->  ( E. y  e.  G  y  C_  x  <->  E. y  e.  G  y  C_  u ) )
1514rspcv 3210 . . . . . . . . . . 11  |-  ( u  e.  F  ->  ( A. x  e.  F  E. y  e.  G  y  C_  x  ->  E. y  e.  G  y  C_  u ) )
1615adantl 466 . . . . . . . . . 10  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  u  e.  F
)  ->  ( A. x  e.  F  E. y  e.  G  y  C_  x  ->  E. y  e.  G  y  C_  u ) )
17 sstr 3512 . . . . . . . . . . . . . 14  |-  ( ( y  C_  u  /\  u  C_  t )  -> 
y  C_  t )
18 sseq1 3525 . . . . . . . . . . . . . . . . 17  |-  ( v  =  y  ->  (
v  C_  t  <->  y  C_  t ) )
1918rspcev 3214 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  G  /\  y  C_  t )  ->  E. v  e.  G  v  C_  t )
2019adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ( F  e.  ( fBas `  X
)  /\  G  e.  ( fBas `  X )
)  /\  u  e.  F )  /\  (
y  e.  G  /\  y  C_  t ) )  ->  E. v  e.  G  v  C_  t )
2120a1d 25 . . . . . . . . . . . . . 14  |-  ( ( ( ( F  e.  ( fBas `  X
)  /\  G  e.  ( fBas `  X )
)  /\  u  e.  F )  /\  (
y  e.  G  /\  y  C_  t ) )  ->  ( t  C_  X  ->  E. v  e.  G  v  C_  t ) )
2217, 21sylanr2 653 . . . . . . . . . . . . 13  |-  ( ( ( ( F  e.  ( fBas `  X
)  /\  G  e.  ( fBas `  X )
)  /\  u  e.  F )  /\  (
y  e.  G  /\  ( y  C_  u  /\  u  C_  t ) ) )  ->  (
t  C_  X  ->  E. v  e.  G  v 
C_  t ) )
2322ancld 553 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( fBas `  X
)  /\  G  e.  ( fBas `  X )
)  /\  u  e.  F )  /\  (
y  e.  G  /\  ( y  C_  u  /\  u  C_  t ) ) )  ->  (
t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v 
C_  t ) ) )
2423exp45 614 . . . . . . . . . . 11  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  u  e.  F
)  ->  ( y  e.  G  ->  ( y 
C_  u  ->  (
u  C_  t  ->  ( t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v 
C_  t ) ) ) ) ) )
2524rexlimdv 2953 . . . . . . . . . 10  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  u  e.  F
)  ->  ( E. y  e.  G  y  C_  u  ->  ( u  C_  t  ->  ( t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) ) ) )
2616, 25syld 44 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  u  e.  F
)  ->  ( A. x  e.  F  E. y  e.  G  y  C_  x  ->  ( u  C_  t  ->  ( t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) ) ) )
2726impancom 440 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( u  e.  F  ->  ( u 
C_  t  ->  (
t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v 
C_  t ) ) ) ) )
2827rexlimdv 2953 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( E. u  e.  F  u  C_  t  ->  ( t  C_  X  ->  ( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) ) )
2928com23 78 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( t  C_  X  ->  ( E. u  e.  F  u  C_  t  ->  ( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) ) )
3029impd 431 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( (
t  C_  X  /\  E. u  e.  F  u 
C_  t )  -> 
( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) )
31 elfg 20107 . . . . . . 7  |-  ( F  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen F )  <-> 
( t  C_  X  /\  E. u  e.  F  u  C_  t ) ) )
3231adantr 465 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
t  e.  ( X
filGen F )  <->  ( t  C_  X  /\  E. u  e.  F  u  C_  t
) ) )
3332adantr 465 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( t  e.  ( X filGen F )  <-> 
( t  C_  X  /\  E. u  e.  F  u  C_  t ) ) )
34 elfg 20107 . . . . . . 7  |-  ( G  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen G )  <-> 
( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) )
3534adantl 466 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
t  e.  ( X
filGen G )  <->  ( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) )
3635adantr 465 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( t  e.  ( X filGen G )  <-> 
( t  C_  X  /\  E. v  e.  G  v  C_  t ) ) )
3730, 33, 363imtr4d 268 . . . 4  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( t  e.  ( X filGen F )  ->  t  e.  ( X filGen G ) ) )
3837ssrdv 3510 . . 3  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  X ) )  /\  A. x  e.  F  E. y  e.  G  y  C_  x
)  ->  ( X filGen F )  C_  ( X filGen G ) )
3938ex 434 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  ( A. x  e.  F  E. y  e.  G  y  C_  x  ->  ( X filGen F )  C_  ( X filGen G ) ) )
4012, 39impbid 191 1  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
) )  ->  (
( X filGen F ) 
C_  ( X filGen G )  <->  A. x  e.  F  E. y  e.  G  y  C_  x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   ` cfv 5586  (class class class)co 6282   fBascfbas 18177   filGencfg 18178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-fbas 18187  df-fg 18188
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator