MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgss Structured version   Unicode version

Theorem fgss 20540
Description: A bigger base generates a bigger filter. (Contributed by NM, 5-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fgss  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
)  /\  F  C_  G
)  ->  ( X filGen F )  C_  ( X filGen G ) )

Proof of Theorem fgss
Dummy variables  x  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrexv 3551 . . . . 5  |-  ( F 
C_  G  ->  ( E. x  e.  F  x  C_  t  ->  E. x  e.  G  x  C_  t
) )
21anim2d 563 . . . 4  |-  ( F 
C_  G  ->  (
( t  C_  X  /\  E. x  e.  F  x  C_  t )  -> 
( t  C_  X  /\  E. x  e.  G  x  C_  t ) ) )
323ad2ant3 1017 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
)  /\  F  C_  G
)  ->  ( (
t  C_  X  /\  E. x  e.  F  x 
C_  t )  -> 
( t  C_  X  /\  E. x  e.  G  x  C_  t ) ) )
4 elfg 20538 . . . 4  |-  ( F  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen F )  <-> 
( t  C_  X  /\  E. x  e.  F  x  C_  t ) ) )
543ad2ant1 1015 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
)  /\  F  C_  G
)  ->  ( t  e.  ( X filGen F )  <-> 
( t  C_  X  /\  E. x  e.  F  x  C_  t ) ) )
6 elfg 20538 . . . 4  |-  ( G  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen G )  <-> 
( t  C_  X  /\  E. x  e.  G  x  C_  t ) ) )
763ad2ant2 1016 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
)  /\  F  C_  G
)  ->  ( t  e.  ( X filGen G )  <-> 
( t  C_  X  /\  E. x  e.  G  x  C_  t ) ) )
83, 5, 73imtr4d 268 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
)  /\  F  C_  G
)  ->  ( t  e.  ( X filGen F )  ->  t  e.  ( X filGen G ) ) )
98ssrdv 3495 1  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  X
)  /\  F  C_  G
)  ->  ( X filGen F )  C_  ( X filGen G ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    e. wcel 1823   E.wrex 2805    C_ wss 3461   ` cfv 5570  (class class class)co 6270   fBascfbas 18601   filGencfg 18602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-iota 5534  df-fun 5572  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-fg 18612
This theorem is referenced by:  fgabs  20546  fgtr  20557  fmss  20613
  Copyright terms: Public domain W3C validator