Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgraphopab Structured version   Unicode version

Theorem fgraphopab 30766
Description: Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
fgraphopab  |-  ( F : A --> B  ->  F  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) } )
Distinct variable groups:    F, a,
b    A, a, b    B, a, b

Proof of Theorem fgraphopab
StepHypRef Expression
1 fssxp 5736 . . . 4  |-  ( F : A --> B  ->  F  C_  ( A  X.  B ) )
2 df-ss 3485 . . . 4  |-  ( F 
C_  ( A  X.  B )  <->  ( F  i^i  ( A  X.  B
) )  =  F )
31, 2sylib 196 . . 3  |-  ( F : A --> B  -> 
( F  i^i  ( A  X.  B ) )  =  F )
4 ffn 5724 . . . . 5  |-  ( F : A --> B  ->  F  Fn  A )
5 dffn5 5906 . . . . 5  |-  ( F  Fn  A  <->  F  =  ( a  e.  A  |->  ( F `  a
) ) )
64, 5sylib 196 . . . 4  |-  ( F : A --> B  ->  F  =  ( a  e.  A  |->  ( F `
 a ) ) )
76ineq1d 3694 . . 3  |-  ( F : A --> B  -> 
( F  i^i  ( A  X.  B ) )  =  ( ( a  e.  A  |->  ( F `
 a ) )  i^i  ( A  X.  B ) ) )
83, 7eqtr3d 2505 . 2  |-  ( F : A --> B  ->  F  =  ( (
a  e.  A  |->  ( F `  a ) )  i^i  ( A  X.  B ) ) )
9 df-mpt 4502 . . . 4  |-  ( a  e.  A  |->  ( F `
 a ) )  =  { <. a ,  b >.  |  ( a  e.  A  /\  b  =  ( F `  a ) ) }
10 df-xp 5000 . . . 4  |-  ( A  X.  B )  =  { <. a ,  b
>.  |  ( a  e.  A  /\  b  e.  B ) }
119, 10ineq12i 3693 . . 3  |-  ( ( a  e.  A  |->  ( F `  a ) )  i^i  ( A  X.  B ) )  =  ( { <. a ,  b >.  |  ( a  e.  A  /\  b  =  ( F `  a ) ) }  i^i  { <. a ,  b >.  |  ( a  e.  A  /\  b  e.  B ) } )
12 inopab 5126 . . 3  |-  ( {
<. a ,  b >.  |  ( a  e.  A  /\  b  =  ( F `  a
) ) }  i^i  {
<. a ,  b >.  |  ( a  e.  A  /\  b  e.  B ) } )  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  =  ( F `  a )
)  /\  ( a  e.  A  /\  b  e.  B ) ) }
13 anandi 825 . . . . 5  |-  ( ( a  e.  A  /\  ( b  =  ( F `  a )  /\  b  e.  B
) )  <->  ( (
a  e.  A  /\  b  =  ( F `  a ) )  /\  ( a  e.  A  /\  b  e.  B
) ) )
14 ancom 450 . . . . . . 7  |-  ( ( b  =  ( F `
 a )  /\  b  e.  B )  <->  ( b  e.  B  /\  b  =  ( F `  a ) ) )
1514anbi2i 694 . . . . . 6  |-  ( ( a  e.  A  /\  ( b  =  ( F `  a )  /\  b  e.  B
) )  <->  ( a  e.  A  /\  (
b  e.  B  /\  b  =  ( F `  a ) ) ) )
16 anass 649 . . . . . 6  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  b  =  ( F `  a ) )  <->  ( a  e.  A  /\  ( b  e.  B  /\  b  =  ( F `  a ) ) ) )
17 eqcom 2471 . . . . . . 7  |-  ( b  =  ( F `  a )  <->  ( F `  a )  =  b )
1817anbi2i 694 . . . . . 6  |-  ( ( ( a  e.  A  /\  b  e.  B
)  /\  b  =  ( F `  a ) )  <->  ( ( a  e.  A  /\  b  e.  B )  /\  ( F `  a )  =  b ) )
1915, 16, 183bitr2i 273 . . . . 5  |-  ( ( a  e.  A  /\  ( b  =  ( F `  a )  /\  b  e.  B
) )  <->  ( (
a  e.  A  /\  b  e.  B )  /\  ( F `  a
)  =  b ) )
2013, 19bitr3i 251 . . . 4  |-  ( ( ( a  e.  A  /\  b  =  ( F `  a )
)  /\  ( a  e.  A  /\  b  e.  B ) )  <->  ( (
a  e.  A  /\  b  e.  B )  /\  ( F `  a
)  =  b ) )
2120opabbii 4506 . . 3  |-  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  =  ( F `  a )
)  /\  ( a  e.  A  /\  b  e.  B ) ) }  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) }
2211, 12, 213eqtri 2495 . 2  |-  ( ( a  e.  A  |->  ( F `  a ) )  i^i  ( A  X.  B ) )  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) }
238, 22syl6eq 2519 1  |-  ( F : A --> B  ->  F  =  { <. a ,  b >.  |  ( ( a  e.  A  /\  b  e.  B
)  /\  ( F `  a )  =  b ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    i^i cin 3470    C_ wss 3471   {copab 4499    |-> cmpt 4500    X. cxp 4992    Fn wfn 5576   -->wf 5577   ` cfv 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pr 4681
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-rab 2818  df-v 3110  df-sbc 3327  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-fv 5589
This theorem is referenced by:  fgraphxp  30767
  Copyright terms: Public domain W3C validator