Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fgmin Structured version   Unicode version

Theorem fgmin 28732
Description: Minimality property of a generated filter: every filter that contains  B contains its generated filter. (Contributed by Jeff Hankins, 5-Sep-2009.) (Revised by Mario Carneiro, 7-Aug-2015.)
Assertion
Ref Expression
fgmin  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( B  C_  F  <->  ( X filGen B )  C_  F
) )

Proof of Theorem fgmin
Dummy variables  x  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfg 19569 . . . . . . 7  |-  ( B  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen B )  <-> 
( t  C_  X  /\  E. x  e.  B  x  C_  t ) ) )
21adantr 465 . . . . . 6  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
t  e.  ( X
filGen B )  <->  ( t  C_  X  /\  E. x  e.  B  x  C_  t
) ) )
32adantr 465 . . . . 5  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( t  e.  ( X filGen B )  <-> 
( t  C_  X  /\  E. x  e.  B  x  C_  t ) ) )
4 ssrexv 3518 . . . . . . . . 9  |-  ( B 
C_  F  ->  ( E. x  e.  B  x  C_  t  ->  E. x  e.  F  x  C_  t
) )
54adantl 466 . . . . . . . 8  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( E. x  e.  B  x  C_  t  ->  E. x  e.  F  x  C_  t
) )
6 filss 19551 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  (
x  e.  F  /\  t  C_  X  /\  x  C_  t ) )  -> 
t  e.  F )
763exp2 1206 . . . . . . . . . . 11  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  ( t 
C_  X  ->  (
x  C_  t  ->  t  e.  F ) ) ) )
87com34 83 . . . . . . . . . 10  |-  ( F  e.  ( Fil `  X
)  ->  ( x  e.  F  ->  ( x 
C_  t  ->  (
t  C_  X  ->  t  e.  F ) ) ) )
98rexlimdv 2939 . . . . . . . . 9  |-  ( F  e.  ( Fil `  X
)  ->  ( E. x  e.  F  x  C_  t  ->  ( t  C_  X  ->  t  e.  F ) ) )
109ad2antlr 726 . . . . . . . 8  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( E. x  e.  F  x  C_  t  ->  ( t  C_  X  ->  t  e.  F ) ) )
115, 10syld 44 . . . . . . 7  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( E. x  e.  B  x  C_  t  ->  ( t  C_  X  ->  t  e.  F ) ) )
1211com23 78 . . . . . 6  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( t  C_  X  ->  ( E. x  e.  B  x  C_  t  ->  t  e.  F ) ) )
1312impd 431 . . . . 5  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( (
t  C_  X  /\  E. x  e.  B  x 
C_  t )  -> 
t  e.  F ) )
143, 13sylbid 215 . . . 4  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( t  e.  ( X filGen B )  ->  t  e.  F
) )
1514ssrdv 3463 . . 3  |-  ( ( ( B  e.  (
fBas `  X )  /\  F  e.  ( Fil `  X ) )  /\  B  C_  F
)  ->  ( X filGen B )  C_  F
)
1615ex 434 . 2  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( B  C_  F  ->  ( X filGen B )  C_  F ) )
17 ssfg 19570 . . . 4  |-  ( B  e.  ( fBas `  X
)  ->  B  C_  ( X filGen B ) )
18 sstr2 3464 . . . 4  |-  ( B 
C_  ( X filGen B )  ->  ( ( X filGen B )  C_  F  ->  B  C_  F
) )
1917, 18syl 16 . . 3  |-  ( B  e.  ( fBas `  X
)  ->  ( ( X filGen B )  C_  F  ->  B  C_  F
) )
2019adantr 465 . 2  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
( X filGen B ) 
C_  F  ->  B  C_  F ) )
2116, 20impbid 191 1  |-  ( ( B  e.  ( fBas `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( B  C_  F  <->  ( X filGen B )  C_  F
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1758   E.wrex 2796    C_ wss 3429   ` cfv 5519  (class class class)co 6193   fBascfbas 17922   filGencfg 17923   Filcfil 19543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-fbas 17932  df-fg 17933  df-fil 19544
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator