MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fgabs Structured version   Visualization version   Unicode version

Theorem fgabs 20972
Description: Absorption law for filter generation. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fgabs  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )

Proof of Theorem fgabs
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 768 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  e.  (
fBas `  Y )
)
2 fgcl 20971 . . . . . . . . 9  |-  ( F  e.  ( fBas `  Y
)  ->  ( Y filGen F )  e.  ( Fil `  Y ) )
3 filfbas 20941 . . . . . . . . 9  |-  ( ( Y filGen F )  e.  ( Fil `  Y
)  ->  ( Y filGen F )  e.  (
fBas `  Y )
)
41, 2, 33syl 18 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  Y ) )
5 fbsspw 20925 . . . . . . . . . 10  |-  ( ( Y filGen F )  e.  ( fBas `  Y
)  ->  ( Y filGen F )  C_  ~P Y )
64, 5syl 17 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  C_  ~P Y
)
7 simplr 770 . . . . . . . . . 10  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  Y  C_  X
)
8 sspwb 4649 . . . . . . . . . 10  |-  ( Y 
C_  X  <->  ~P Y  C_ 
~P X )
97, 8sylib 201 . . . . . . . . 9  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ~P Y  C_  ~P X )
106, 9sstrd 3428 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  C_  ~P X
)
11 simpr 468 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  X  e.  _V )
12 fbasweak 20958 . . . . . . . 8  |-  ( ( ( Y filGen F )  e.  ( fBas `  Y
)  /\  ( Y filGen F )  C_  ~P X  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  X ) )
134, 10, 11, 12syl3anc 1292 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( Y filGen F )  e.  ( fBas `  X ) )
14 elfg 20964 . . . . . . 7  |-  ( ( Y filGen F )  e.  ( fBas `  X
)  ->  ( x  e.  ( X filGen ( Y
filGen F ) )  <->  ( x  C_  X  /\  E. y  e.  ( Y filGen F ) y  C_  x )
) )
1513, 14syl 17 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( x  e.  ( X filGen ( Y
filGen F ) )  <->  ( x  C_  X  /\  E. y  e.  ( Y filGen F ) y  C_  x )
) )
161adantr 472 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  F  e.  ( fBas `  Y
) )
17 elfg 20964 . . . . . . . . . 10  |-  ( F  e.  ( fBas `  Y
)  ->  ( y  e.  ( Y filGen F )  <-> 
( y  C_  Y  /\  E. z  e.  F  z  C_  y ) ) )
1816, 17syl 17 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  (
y  e.  ( Y
filGen F )  <->  ( y  C_  Y  /\  E. z  e.  F  z  C_  y ) ) )
19 fbsspw 20925 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ~P Y )
201, 19syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ~P Y )
2120, 9sstrd 3428 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ~P X )
22 fbasweak 20958 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  ( fBas `  Y )  /\  F  C_ 
~P X  /\  X  e.  _V )  ->  F  e.  ( fBas `  X
) )
231, 21, 11, 22syl3anc 1292 . . . . . . . . . . . . . . . 16  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  e.  (
fBas `  X )
)
24 fgcl 20971 . . . . . . . . . . . . . . . 16  |-  ( F  e.  ( fBas `  X
)  ->  ( X filGen F )  e.  ( Fil `  X ) )
2523, 24syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen F )  e.  ( Fil `  X ) )
2625ad2antrr 740 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
( X filGen F )  e.  ( Fil `  X
) )
27 ssfg 20965 . . . . . . . . . . . . . . . . . . 19  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( X filGen F ) )
2823, 27syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ( X filGen F ) )
2928adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  ->  F  C_  ( X filGen F ) )
3029sselda 3418 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  z  e.  F
)  ->  z  e.  ( X filGen F ) )
3130adantrr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( z  e.  F  /\  z  C_  y ) )  -> 
z  e.  ( X
filGen F ) )
3231adantrr 731 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
z  e.  ( X
filGen F ) )
33 simplrl 778 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  ->  x  C_  X )
34 simprlr 781 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
z  C_  y )
35 simprr 774 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
y  C_  x )
3634, 35sstrd 3428 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  -> 
z  C_  x )
37 filss 20946 . . . . . . . . . . . . . 14  |-  ( ( ( X filGen F )  e.  ( Fil `  X
)  /\  ( z  e.  ( X filGen F )  /\  x  C_  X  /\  z  C_  x ) )  ->  x  e.  ( X filGen F ) )
3826, 32, 33, 36, 37syl13anc 1294 . . . . . . . . . . . . 13  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( ( z  e.  F  /\  z  C_  y )  /\  y  C_  x ) )  ->  x  e.  ( X filGen F ) )
3938expr 626 . . . . . . . . . . . 12  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  /\  ( z  e.  F  /\  z  C_  y ) )  -> 
( y  C_  x  ->  x  e.  ( X
filGen F ) ) )
4039rexlimdvaa 2872 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  (
x  C_  X  /\  y  C_  Y ) )  ->  ( E. z  e.  F  z  C_  y  ->  ( y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4140anassrs 660 . . . . . . . . . 10  |-  ( ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  /\  y  C_  Y )  ->  ( E. z  e.  F  z  C_  y  ->  (
y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4241expimpd 614 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  (
( y  C_  Y  /\  E. z  e.  F  z  C_  y )  -> 
( y  C_  x  ->  x  e.  ( X
filGen F ) ) ) )
4318, 42sylbid 223 . . . . . . . 8  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  (
y  e.  ( Y
filGen F )  ->  (
y  C_  x  ->  x  e.  ( X filGen F ) ) ) )
4443rexlimdv 2870 . . . . . . 7  |-  ( ( ( ( F  e.  ( fBas `  Y
)  /\  Y  C_  X
)  /\  X  e.  _V )  /\  x  C_  X )  ->  ( E. y  e.  ( Y filGen F ) y 
C_  x  ->  x  e.  ( X filGen F ) ) )
4544expimpd 614 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( ( x 
C_  X  /\  E. y  e.  ( Y filGen F ) y  C_  x )  ->  x  e.  ( X filGen F ) ) )
4615, 45sylbid 223 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( x  e.  ( X filGen ( Y
filGen F ) )  ->  x  e.  ( X filGen F ) ) )
4746ssrdv 3424 . . . 4  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen ( Y filGen F ) ) 
C_  ( X filGen F ) )
48 ssfg 20965 . . . . . 6  |-  ( F  e.  ( fBas `  Y
)  ->  F  C_  ( Y filGen F ) )
4948ad2antrr 740 . . . . 5  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  F  C_  ( Y filGen F ) )
50 fgss 20966 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  ( Y filGen F )  e.  ( fBas `  X
)  /\  F  C_  ( Y filGen F ) )  ->  ( X filGen F )  C_  ( X filGen ( Y filGen F ) ) )
5123, 13, 49, 50syl3anc 1292 . . . 4  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen F )  C_  ( X filGen ( Y filGen F ) ) )
5247, 51eqssd 3435 . . 3  |-  ( ( ( F  e.  (
fBas `  Y )  /\  Y  C_  X )  /\  X  e.  _V )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
5352ex 441 . 2  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X  e.  _V  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) ) )
54 df-fg 19045 . . . . 5  |-  filGen  =  ( w  e.  _V ,  x  e.  ( fBas `  w )  |->  { y  e.  ~P w  |  ( x  i^i  ~P y )  =/=  (/) } )
5554reldmmpt2 6426 . . . 4  |-  Rel  dom  filGen
5655ovprc1 6339 . . 3  |-  ( -.  X  e.  _V  ->  ( X filGen ( Y filGen F ) )  =  (/) )
5755ovprc1 6339 . . 3  |-  ( -.  X  e.  _V  ->  ( X filGen F )  =  (/) )
5856, 57eqtr4d 2508 . 2  |-  ( -.  X  e.  _V  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
5953, 58pm2.61d1 164 1  |-  ( ( F  e.  ( fBas `  Y )  /\  Y  C_  X )  ->  ( X filGen ( Y filGen F ) )  =  ( X filGen F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   E.wrex 2757   {crab 2760   _Vcvv 3031    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   ` cfv 5589  (class class class)co 6308   fBascfbas 19035   filGencfg 19036   Filcfil 20938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-fbas 19044  df-fg 19045  df-fil 20939
This theorem is referenced by:  minveclem4a  22450  minveclem4aOLD  22462
  Copyright terms: Public domain W3C validator