MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffvresb Structured version   Unicode version

Theorem ffvresb 6050
Description: A necessary and sufficient condition for a restricted function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Assertion
Ref Expression
ffvresb  |-  ( Fun 
F  ->  ( ( F  |`  A ) : A --> B  <->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  B ) ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem ffvresb
StepHypRef Expression
1 fdm 5733 . . . . . 6  |-  ( ( F  |`  A ) : A --> B  ->  dom  ( F  |`  A )  =  A )
2 dmres 5292 . . . . . . 7  |-  dom  ( F  |`  A )  =  ( A  i^i  dom  F )
3 inss2 3719 . . . . . . 7  |-  ( A  i^i  dom  F )  C_ 
dom  F
42, 3eqsstri 3534 . . . . . 6  |-  dom  ( F  |`  A )  C_  dom  F
51, 4syl6eqssr 3555 . . . . 5  |-  ( ( F  |`  A ) : A --> B  ->  A  C_ 
dom  F )
65sselda 3504 . . . 4  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  x  e.  dom  F
)
7 fvres 5878 . . . . . 6  |-  ( x  e.  A  ->  (
( F  |`  A ) `
 x )  =  ( F `  x
) )
87adantl 466 . . . . 5  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( ( F  |`  A ) `  x
)  =  ( F `
 x ) )
9 ffvelrn 6017 . . . . 5  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( ( F  |`  A ) `  x
)  e.  B )
108, 9eqeltrrd 2556 . . . 4  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( F `  x
)  e.  B )
116, 10jca 532 . . 3  |-  ( ( ( F  |`  A ) : A --> B  /\  x  e.  A )  ->  ( x  e.  dom  F  /\  ( F `  x )  e.  B
) )
1211ralrimiva 2878 . 2  |-  ( ( F  |`  A ) : A --> B  ->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  B ) )
13 simpl 457 . . . . . . 7  |-  ( ( x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  x  e.  dom  F )
1413ralimi 2857 . . . . . 6  |-  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  A. x  e.  A  x  e.  dom  F )
15 dfss3 3494 . . . . . 6  |-  ( A 
C_  dom  F  <->  A. x  e.  A  x  e.  dom  F )
1614, 15sylibr 212 . . . . 5  |-  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  A  C_  dom  F )
17 funfn 5615 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
18 fnssres 5692 . . . . . 6  |-  ( ( F  Fn  dom  F  /\  A  C_  dom  F
)  ->  ( F  |`  A )  Fn  A
)
1917, 18sylanb 472 . . . . 5  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F  |`  A )  Fn  A )
2016, 19sylan2 474 . . . 4  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  ( F  |`  A )  Fn  A
)
21 simpr 461 . . . . . . . 8  |-  ( ( x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  ( F `  x )  e.  B
)
227eleq1d 2536 . . . . . . . 8  |-  ( x  e.  A  ->  (
( ( F  |`  A ) `  x
)  e.  B  <->  ( F `  x )  e.  B
) )
2321, 22syl5ibr 221 . . . . . . 7  |-  ( x  e.  A  ->  (
( x  e.  dom  F  /\  ( F `  x )  e.  B
)  ->  ( ( F  |`  A ) `  x )  e.  B
) )
2423ralimia 2855 . . . . . 6  |-  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  A. x  e.  A  ( ( F  |`  A ) `  x
)  e.  B )
2524adantl 466 . . . . 5  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  A. x  e.  A  ( ( F  |`  A ) `  x )  e.  B
)
26 fnfvrnss 6047 . . . . 5  |-  ( ( ( F  |`  A )  Fn  A  /\  A. x  e.  A  (
( F  |`  A ) `
 x )  e.  B )  ->  ran  ( F  |`  A ) 
C_  B )
2720, 25, 26syl2anc 661 . . . 4  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  ran  ( F  |`  A )  C_  B
)
28 df-f 5590 . . . 4  |-  ( ( F  |`  A ) : A --> B  <->  ( ( F  |`  A )  Fn  A  /\  ran  ( F  |`  A )  C_  B ) )
2920, 27, 28sylanbrc 664 . . 3  |-  ( ( Fun  F  /\  A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B ) )  ->  ( F  |`  A ) : A --> B )
3029ex 434 . 2  |-  ( Fun 
F  ->  ( A. x  e.  A  (
x  e.  dom  F  /\  ( F `  x
)  e.  B )  ->  ( F  |`  A ) : A --> B ) )
3112, 30impbid2 204 1  |-  ( Fun 
F  ->  ( ( F  |`  A ) : A --> B  <->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814    i^i cin 3475    C_ wss 3476   dom cdm 4999   ran crn 5000    |` cres 5001   Fun wfun 5580    Fn wfn 5581   -->wf 5582   ` cfv 5586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-fv 5594
This theorem is referenced by:  lmbr2  19526  lmff  19568  lmmbr2  21433  iscau2  21451  sseqf  27971  fourierdlem97  31504
  Copyright terms: Public domain W3C validator