MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffthf1o Structured version   Unicode version

Theorem ffthf1o 15335
Description: The morphism map of a fully faithful functor is a bijection. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
isfth.b  |-  B  =  ( Base `  C
)
isfth.h  |-  H  =  ( Hom  `  C
)
isfth.j  |-  J  =  ( Hom  `  D
)
ffthf1o.f  |-  ( ph  ->  F ( ( C Full 
D )  i^i  ( C Faith  D ) ) G )
ffthf1o.x  |-  ( ph  ->  X  e.  B )
ffthf1o.y  |-  ( ph  ->  Y  e.  B )
Assertion
Ref Expression
ffthf1o  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F `  X ) J ( F `  Y ) ) )

Proof of Theorem ffthf1o
StepHypRef Expression
1 isfth.b . . 3  |-  B  =  ( Base `  C
)
2 isfth.h . . 3  |-  H  =  ( Hom  `  C
)
3 isfth.j . . 3  |-  J  =  ( Hom  `  D
)
4 ffthf1o.f . . . . 5  |-  ( ph  ->  F ( ( C Full 
D )  i^i  ( C Faith  D ) ) G )
5 brin 4505 . . . . 5  |-  ( F ( ( C Full  D
)  i^i  ( C Faith  D ) ) G  <->  ( F
( C Full  D ) G  /\  F ( C Faith 
D ) G ) )
64, 5sylib 196 . . . 4  |-  ( ph  ->  ( F ( C Full 
D ) G  /\  F ( C Faith  D
) G ) )
76simprd 463 . . 3  |-  ( ph  ->  F ( C Faith  D
) G )
8 ffthf1o.x . . 3  |-  ( ph  ->  X  e.  B )
9 ffthf1o.y . . 3  |-  ( ph  ->  Y  e.  B )
101, 2, 3, 7, 8, 9fthf1 15333 . 2  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -1-1-> ( ( F `  X
) J ( F `
 Y ) ) )
116simpld 459 . . 3  |-  ( ph  ->  F ( C Full  D
) G )
121, 3, 2, 11, 8, 9fullfo 15328 . 2  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -onto-> ( ( F `  X
) J ( F `
 Y ) ) )
13 df-f1o 5601 . 2  |-  ( ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F `  X ) J ( F `  Y ) )  <->  ( ( X G Y ) : ( X H Y ) -1-1-> ( ( F `
 X ) J ( F `  Y
) )  /\  ( X G Y ) : ( X H Y ) -onto-> ( ( F `
 X ) J ( F `  Y
) ) ) )
1410, 12, 13sylanbrc 664 1  |-  ( ph  ->  ( X G Y ) : ( X H Y ) -1-1-onto-> ( ( F `  X ) J ( F `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    i^i cin 3470   class class class wbr 4456   -1-1->wf1 5591   -onto->wfo 5592   -1-1-onto->wf1o 5593   ` cfv 5594  (class class class)co 6296   Basecbs 14644   Hom chom 14723   Full cful 15318   Faith cfth 15319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-map 7440  df-ixp 7489  df-func 15274  df-full 15320  df-fth 15321
This theorem is referenced by:  catcisolem  15512
  Copyright terms: Public domain W3C validator