MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffnov Structured version   Unicode version

Theorem ffnov 6405
Description: An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.)
Assertion
Ref Expression
ffnov  |-  ( F : ( A  X.  B ) --> C  <->  ( F  Fn  ( A  X.  B
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, F, y

Proof of Theorem ffnov
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ffnfv 6058 . 2  |-  ( F : ( A  X.  B ) --> C  <->  ( F  Fn  ( A  X.  B
)  /\  A. w  e.  ( A  X.  B
) ( F `  w )  e.  C
) )
2 fveq2 5872 . . . . . 6  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( F `  <. x ,  y >. )
)
3 df-ov 6299 . . . . . 6  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3syl6eqr 2516 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( x F y ) )
54eleq1d 2526 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( ( F `
 w )  e.  C  <->  ( x F y )  e.  C
) )
65ralxp 5154 . . 3  |-  ( A. w  e.  ( A  X.  B ) ( F `
 w )  e.  C  <->  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C )
76anbi2i 694 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  A. w  e.  ( A  X.  B ) ( F `  w )  e.  C )  <->  ( F  Fn  ( A  X.  B
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
81, 7bitri 249 1  |-  ( F : ( A  X.  B ) --> C  <->  ( F  Fn  ( A  X.  B
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   <.cop 4038    X. cxp 5006    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pr 4695
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6299
This theorem is referenced by:  fovcl  6406  cantnfvalf  8101  axaddf  9539  axmulf  9540  mulnzcnopr  10216  frmdplusg  16149  gass  16466  sylow2blem2  16768  matecl  19054  txdis1cn  20262  isxmet2d  20956  prdsmet  20999  imasdsf1olem  21002  imasf1oxmet  21004  imasf1omet  21005  xmetresbl  21066  comet  21142  tgqioo  21431  xrtgioo  21437  opnmblALT  22138  dvdsmulf1o  23596  issubgoi  25439  ghgrpOLD  25497  fovcld  27626  pstmxmet  28037  xrge0pluscn  28083  isbndx  30483  isbnd3  30485  isbnd3b  30486  prdsbnd  30494  isdrngo2  30566  clintopcllaw  32797
  Copyright terms: Public domain W3C validator