MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffnov Structured version   Unicode version

Theorem ffnov 6194
Description: An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.)
Assertion
Ref Expression
ffnov  |-  ( F : ( A  X.  B ) --> C  <->  ( F  Fn  ( A  X.  B
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
Distinct variable groups:    x, y, A    x, B, y    x, C, y    x, F, y

Proof of Theorem ffnov
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ffnfv 5869 . 2  |-  ( F : ( A  X.  B ) --> C  <->  ( F  Fn  ( A  X.  B
)  /\  A. w  e.  ( A  X.  B
) ( F `  w )  e.  C
) )
2 fveq2 5691 . . . . . 6  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( F `  <. x ,  y >. )
)
3 df-ov 6094 . . . . . 6  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3syl6eqr 2493 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( x F y ) )
54eleq1d 2509 . . . 4  |-  ( w  =  <. x ,  y
>.  ->  ( ( F `
 w )  e.  C  <->  ( x F y )  e.  C
) )
65ralxp 4981 . . 3  |-  ( A. w  e.  ( A  X.  B ) ( F `
 w )  e.  C  <->  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C )
76anbi2i 694 . 2  |-  ( ( F  Fn  ( A  X.  B )  /\  A. w  e.  ( A  X.  B ) ( F `  w )  e.  C )  <->  ( F  Fn  ( A  X.  B
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
81, 7bitri 249 1  |-  ( F : ( A  X.  B ) --> C  <->  ( F  Fn  ( A  X.  B
)  /\  A. x  e.  A  A. y  e.  B  ( x F y )  e.  C ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2715   <.cop 3883    X. cxp 4838    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-fv 5426  df-ov 6094
This theorem is referenced by:  fovcl  6195  cantnfvalf  7873  axaddf  9312  axmulf  9313  mulnzcnopr  9982  mndfo  15445  frmdplusg  15532  gass  15819  sylow2blem2  16120  matecl  18326  txdis1cn  19208  isxmet2d  19902  prdsmet  19945  imasdsf1olem  19948  imasf1oxmet  19950  imasf1omet  19951  xmetresbl  20012  comet  20088  tgqioo  20377  xrtgioo  20383  opnmblALT  21083  dvdsmulf1o  22534  issubgoi  23797  ghgrp  23855  fovcld  25955  ofrn  25957  pstmxmet  26324  xrge0pluscn  26370  isbndx  28681  isbnd3  28683  isbnd3b  28684  prdsbnd  28692  isdrngo2  28764
  Copyright terms: Public domain W3C validator