MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffnfvf Structured version   Unicode version

Theorem ffnfvf 6034
Description: A function maps to a class to which all values belong. This version of ffnfv 6033 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
Hypotheses
Ref Expression
ffnfvf.1  |-  F/_ x A
ffnfvf.2  |-  F/_ x B
ffnfvf.3  |-  F/_ x F
Assertion
Ref Expression
ffnfvf  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )

Proof of Theorem ffnfvf
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ffnfv 6033 . 2  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. z  e.  A  ( F `  z )  e.  B
) )
2 nfcv 2616 . . . 4  |-  F/_ z A
3 ffnfvf.1 . . . 4  |-  F/_ x A
4 ffnfvf.3 . . . . . 6  |-  F/_ x F
5 nfcv 2616 . . . . . 6  |-  F/_ x
z
64, 5nffv 5855 . . . . 5  |-  F/_ x
( F `  z
)
7 ffnfvf.2 . . . . 5  |-  F/_ x B
86, 7nfel 2629 . . . 4  |-  F/ x
( F `  z
)  e.  B
9 nfv 1712 . . . 4  |-  F/ z ( F `  x
)  e.  B
10 fveq2 5848 . . . . 5  |-  ( z  =  x  ->  ( F `  z )  =  ( F `  x ) )
1110eleq1d 2523 . . . 4  |-  ( z  =  x  ->  (
( F `  z
)  e.  B  <->  ( F `  x )  e.  B
) )
122, 3, 8, 9, 11cbvralf 3075 . . 3  |-  ( A. z  e.  A  ( F `  z )  e.  B  <->  A. x  e.  A  ( F `  x )  e.  B )
1312anbi2i 692 . 2  |-  ( ( F  Fn  A  /\  A. z  e.  A  ( F `  z )  e.  B )  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
141, 13bitri 249 1  |-  ( F : A --> B  <->  ( F  Fn  A  /\  A. x  e.  A  ( F `  x )  e.  B
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    e. wcel 1823   F/_wnfc 2602   A.wral 2804    Fn wfn 5565   -->wf 5566   ` cfv 5570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pr 4676
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-rab 2813  df-v 3108  df-sbc 3325  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-fv 5578
This theorem is referenced by:  ixpf  7484
  Copyright terms: Public domain W3C validator