Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffnfvf Structured version   Unicode version

Theorem ffnfvf 6047
 Description: A function maps to a class to which all values belong. This version of ffnfv 6046 uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006.)
Hypotheses
Ref Expression
ffnfvf.1
ffnfvf.2
ffnfvf.3
Assertion
Ref Expression
ffnfvf

Proof of Theorem ffnfvf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ffnfv 6046 . 2
2 nfcv 2629 . . . 4
3 ffnfvf.1 . . . 4
4 ffnfvf.3 . . . . . 6
5 nfcv 2629 . . . . . 6
64, 5nffv 5872 . . . . 5
7 ffnfvf.2 . . . . 5
86, 7nfel 2642 . . . 4
9 nfv 1683 . . . 4
10 fveq2 5865 . . . . 5
1110eleq1d 2536 . . . 4
122, 3, 8, 9, 11cbvralf 3082 . . 3
1312anbi2i 694 . 2
141, 13bitri 249 1
 Colors of variables: wff setvar class Syntax hints:   wb 184   wa 369   wcel 1767  wnfc 2615  wral 2814   wfn 5582  wf 5583  cfv 5587 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-fv 5595 This theorem is referenced by:  ixpf  7491
 Copyright terms: Public domain W3C validator