Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  festino Structured version   Visualization version   Unicode version

Theorem festino 2420
 Description: "Festino", one of the syllogisms of Aristotelian logic. No is , and some is , therefore some is not . (In Aristotelian notation, EIO-2: PeM and SiM therefore SoP.) (Contributed by David A. Wheeler, 25-Nov-2016.)
Hypotheses
Ref Expression
festino.maj
festino.min
Assertion
Ref Expression
festino

Proof of Theorem festino
StepHypRef Expression
1 festino.min . 2
2 festino.maj . . . . 5
32spi 1962 . . . 4
43con2i 124 . . 3
54anim2i 579 . 2
61, 5eximii 1717 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wa 376  wal 1450  wex 1671 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-12 1950 This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator