MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  festino Structured version   Visualization version   Unicode version

Theorem festino 2420
Description: "Festino", one of the syllogisms of Aristotelian logic. No  ph is  ps, and some  ch is  ps, therefore some  ch is not  ph. (In Aristotelian notation, EIO-2: PeM and SiM therefore SoP.) (Contributed by David A. Wheeler, 25-Nov-2016.)
Hypotheses
Ref Expression
festino.maj  |-  A. x
( ph  ->  -.  ps )
festino.min  |-  E. x
( ch  /\  ps )
Assertion
Ref Expression
festino  |-  E. x
( ch  /\  -.  ph )

Proof of Theorem festino
StepHypRef Expression
1 festino.min . 2  |-  E. x
( ch  /\  ps )
2 festino.maj . . . . 5  |-  A. x
( ph  ->  -.  ps )
32spi 1962 . . . 4  |-  ( ph  ->  -.  ps )
43con2i 124 . . 3  |-  ( ps 
->  -.  ph )
54anim2i 579 . 2  |-  ( ( ch  /\  ps )  ->  ( ch  /\  -.  ph ) )
61, 5eximii 1717 1  |-  E. x
( ch  /\  -.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376   A.wal 1450   E.wex 1671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-12 1950
This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator