Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  feq23 Structured version   Unicode version

Theorem feq23 5698
 Description: Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
Assertion
Ref Expression
feq23

Proof of Theorem feq23
StepHypRef Expression
1 feq2 5696 . 2
2 feq3 5697 . 2
31, 2sylan9bb 698 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 367   wceq 1405  wf 5564 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-an 369  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-in 3420  df-ss 3427  df-fn 5571  df-f 5572 This theorem is referenced by:  feq23i  5707  ismgmOLD  25722  ismndo2  25747  rngomndo  25823  seff  36017
 Copyright terms: Public domain W3C validator