MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fdiagfn Structured version   Unicode version

Theorem fdiagfn 7420
Description: Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
fdiagfn.f  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
Assertion
Ref Expression
fdiagfn  |-  ( ( B  e.  V  /\  I  e.  W )  ->  F : B --> ( B  ^m  I ) )
Distinct variable groups:    x, B    x, I    x, V    x, W
Allowed substitution hint:    F( x)

Proof of Theorem fdiagfn
StepHypRef Expression
1 fconst6g 5713 . . . 4  |-  ( x  e.  B  ->  (
I  X.  { x } ) : I --> B )
21adantl 464 . . 3  |-  ( ( ( B  e.  V  /\  I  e.  W
)  /\  x  e.  B )  ->  (
I  X.  { x } ) : I --> B )
3 elmapg 7390 . . . 4  |-  ( ( B  e.  V  /\  I  e.  W )  ->  ( ( I  X.  { x } )  e.  ( B  ^m  I )  <->  ( I  X.  { x } ) : I --> B ) )
43adantr 463 . . 3  |-  ( ( ( B  e.  V  /\  I  e.  W
)  /\  x  e.  B )  ->  (
( I  X.  {
x } )  e.  ( B  ^m  I
)  <->  ( I  X.  { x } ) : I --> B ) )
52, 4mpbird 232 . 2  |-  ( ( ( B  e.  V  /\  I  e.  W
)  /\  x  e.  B )  ->  (
I  X.  { x } )  e.  ( B  ^m  I ) )
6 fdiagfn.f . 2  |-  F  =  ( x  e.  B  |->  ( I  X.  {
x } ) )
75, 6fmptd 5989 1  |-  ( ( B  e.  V  /\  I  e.  W )  ->  F : B --> ( B  ^m  I ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   {csn 3971    |-> cmpt 4452    X. cxp 4940   -->wf 5521  (class class class)co 6234    ^m cmap 7377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-rab 2762  df-v 3060  df-sbc 3277  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-fv 5533  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-map 7379
This theorem is referenced by:  pwsdiagmhm  16216
  Copyright terms: Public domain W3C validator