MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop Structured version   Visualization version   Unicode version

Theorem fctop 20096
Description: The finite complement topology on a set  A. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
fctop  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  (TopOn `  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem fctop
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uniss 4211 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  C_  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
2 ssrab2 3500 . . . . . . . . 9  |-  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } 
C_  ~P A
3 sspwuni 4360 . . . . . . . . 9  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  ~P A 
<-> 
U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } 
C_  A )
42, 3mpbi 213 . . . . . . . 8  |-  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  A
51, 4syl6ss 3430 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  C_  A
)
6 vex 3034 . . . . . . . . 9  |-  y  e. 
_V
76uniex 6606 . . . . . . . 8  |-  U. y  e.  _V
87elpw 3948 . . . . . . 7  |-  ( U. y  e.  ~P A  <->  U. y  C_  A )
95, 8sylibr 217 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  ~P A )
10 uni0c 4216 . . . . . . . . . . 11  |-  ( U. y  =  (/)  <->  A. z  e.  y  z  =  (/) )
1110notbii 303 . . . . . . . . . 10  |-  ( -. 
U. y  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
12 rexnal 2836 . . . . . . . . . 10  |-  ( E. z  e.  y  -.  z  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
1311, 12bitr4i 260 . . . . . . . . 9  |-  ( -. 
U. y  =  (/)  <->  E. z  e.  y  -.  z  =  (/) )
14 ssel2 3413 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  z  e.  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
15 difeq2 3534 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A  \  x )  =  ( A  \  z
) )
1615eleq1d 2533 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  z )  e.  Fin ) )
17 eqeq1 2475 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
x  =  (/)  <->  z  =  (/) ) )
1816, 17orbi12d 724 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  z )  e. 
Fin  \/  z  =  (/) ) ) )
1918elrab 3184 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( z  e.  ~P A  /\  ( ( A 
\  z )  e. 
Fin  \/  z  =  (/) ) ) )
2014, 19sylib 201 . . . . . . . . . . . . . . . 16  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( z  e.  ~P A  /\  (
( A  \  z
)  e.  Fin  \/  z  =  (/) ) ) )
2120simprd 470 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( ( A  \  z )  e. 
Fin  \/  z  =  (/) ) )
2221ord 384 . . . . . . . . . . . . . 14  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  ( A  \  z
)  e.  Fin  ->  z  =  (/) ) )
2322con1d 129 . . . . . . . . . . . . 13  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  z  =  (/)  ->  ( A  \  z )  e. 
Fin ) )
2423imp 436 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  z )  e. 
Fin )
25 elssuni 4219 . . . . . . . . . . . . . . . 16  |-  ( z  e.  y  ->  z  C_ 
U. y )
2625sscond 3559 . . . . . . . . . . . . . . 15  |-  ( z  e.  y  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
27 ssfi 7810 . . . . . . . . . . . . . . 15  |-  ( ( ( A  \  z
)  e.  Fin  /\  ( A  \  U. y
)  C_  ( A  \  z ) )  -> 
( A  \  U. y )  e.  Fin )
2826, 27sylan2 482 . . . . . . . . . . . . . 14  |-  ( ( ( A  \  z
)  e.  Fin  /\  z  e.  y )  ->  ( A  \  U. y )  e.  Fin )
2928expcom 442 . . . . . . . . . . . . 13  |-  ( z  e.  y  ->  (
( A  \  z
)  e.  Fin  ->  ( A  \  U. y
)  e.  Fin )
)
3029ad2antlr 741 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  (
( A  \  z
)  e.  Fin  ->  ( A  \  U. y
)  e.  Fin )
)
3124, 30mpd 15 . . . . . . . . . . 11  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  U. y )  e.  Fin )
3231exp31 615 . . . . . . . . . 10  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( z  e.  y  ->  ( -.  z  =  (/)  ->  ( A  \  U. y )  e.  Fin ) ) )
3332rexlimdv 2870 . . . . . . . . 9  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( E. z  e.  y  -.  z  =  (/)  ->  ( A  \ 
U. y )  e. 
Fin ) )
3413, 33syl5bi 225 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( -.  U. y  =  (/)  ->  ( A  \  U. y )  e.  Fin ) )
3534con1d 129 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( -.  ( A  \  U. y )  e.  Fin  ->  U. y  =  (/) ) )
3635orrd 385 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( ( A 
\  U. y )  e. 
Fin  \/  U. y  =  (/) ) )
37 difeq2 3534 . . . . . . . . 9  |-  ( x  =  U. y  -> 
( A  \  x
)  =  ( A 
\  U. y ) )
3837eleq1d 2533 . . . . . . . 8  |-  ( x  =  U. y  -> 
( ( A  \  x )  e.  Fin  <->  ( A  \  U. y )  e.  Fin ) )
39 eqeq1 2475 . . . . . . . 8  |-  ( x  =  U. y  -> 
( x  =  (/)  <->  U. y  =  (/) ) )
4038, 39orbi12d 724 . . . . . . 7  |-  ( x  =  U. y  -> 
( ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) )  <->  ( ( A 
\  U. y )  e. 
Fin  \/  U. y  =  (/) ) ) )
4140elrab 3184 . . . . . 6  |-  ( U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( U. y  e. 
~P A  /\  (
( A  \  U. y )  e.  Fin  \/ 
U. y  =  (/) ) ) )
429, 36, 41sylanbrc 677 . . . . 5  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
4342ax-gen 1677 . . . 4  |-  A. y
( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
44 ssinss1 3651 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
y  i^i  z )  C_  A )
456elpw 3948 . . . . . . . . 9  |-  ( y  e.  ~P A  <->  y  C_  A )
466inex1 4537 . . . . . . . . . 10  |-  ( y  i^i  z )  e. 
_V
4746elpw 3948 . . . . . . . . 9  |-  ( ( y  i^i  z )  e.  ~P A  <->  ( y  i^i  z )  C_  A
)
4844, 45, 473imtr4i 274 . . . . . . . 8  |-  ( y  e.  ~P A  -> 
( y  i^i  z
)  e.  ~P A
)
4948ad2antrr 740 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( y  i^i  z )  e.  ~P A )
50 difindi 3688 . . . . . . . . . . 11  |-  ( A 
\  ( y  i^i  z ) )  =  ( ( A  \ 
y )  u.  ( A  \  z ) )
51 unfi 7856 . . . . . . . . . . 11  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( ( A  \ 
y )  u.  ( A  \  z ) )  e.  Fin )
5250, 51syl5eqel 2553 . . . . . . . . . 10  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( A  \  (
y  i^i  z )
)  e.  Fin )
5352orcd 399 . . . . . . . . 9  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( ( A  \ 
( y  i^i  z
) )  e.  Fin  \/  ( y  i^i  z
)  =  (/) ) )
54 ineq1 3618 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  ( (/)  i^i  z
) )
55 incom 3616 . . . . . . . . . . . 12  |-  ( (/)  i^i  z )  =  ( z  i^i  (/) )
56 in0 3763 . . . . . . . . . . . 12  |-  ( z  i^i  (/) )  =  (/)
5755, 56eqtri 2493 . . . . . . . . . . 11  |-  ( (/)  i^i  z )  =  (/)
5854, 57syl6eq 2521 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  (/) )
5958olcd 400 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  e.  Fin  \/  (
y  i^i  z )  =  (/) ) )
60 ineq2 3619 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  ( y  i^i  (/) ) )
61 in0 3763 . . . . . . . . . . 11  |-  ( y  i^i  (/) )  =  (/)
6260, 61syl6eq 2521 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  (/) )
6362olcd 400 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  e.  Fin  \/  (
y  i^i  z )  =  (/) ) )
6453, 59, 63ccase2 963 . . . . . . . 8  |-  ( ( ( ( A  \ 
y )  e.  Fin  \/  y  =  (/) )  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) )  ->  ( ( A 
\  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) )
6564ad2ant2l 760 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( ( A  \  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) )
6649, 65jca 541 . . . . . 6  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( (
y  i^i  z )  e.  ~P A  /\  (
( A  \  (
y  i^i  z )
)  e.  Fin  \/  ( y  i^i  z
)  =  (/) ) ) )
67 difeq2 3534 . . . . . . . . . 10  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
6867eleq1d 2533 . . . . . . . . 9  |-  ( x  =  y  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
69 eqeq1 2475 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
7068, 69orbi12d 724 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  y )  e. 
Fin  \/  y  =  (/) ) ) )
7170elrab 3184 . . . . . . 7  |-  ( y  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) ) )
7271, 19anbi12i 711 . . . . . 6  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )  <->  ( (
y  e.  ~P A  /\  ( ( A  \ 
y )  e.  Fin  \/  y  =  (/) ) )  /\  ( z  e. 
~P A  /\  (
( A  \  z
)  e.  Fin  \/  z  =  (/) ) ) ) )
73 difeq2 3534 . . . . . . . . 9  |-  ( x  =  ( y  i^i  z )  ->  ( A  \  x )  =  ( A  \  (
y  i^i  z )
) )
7473eleq1d 2533 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  ( y  i^i  z
) )  e.  Fin ) )
75 eqeq1 2475 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
x  =  (/)  <->  ( y  i^i  z )  =  (/) ) )
7674, 75orbi12d 724 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) ) )
7776elrab 3184 . . . . . 6  |-  ( ( y  i^i  z )  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( ( y  i^i  z )  e.  ~P A  /\  ( ( A 
\  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) ) )
7866, 72, 773imtr4i 274 . . . . 5  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )  -> 
( y  i^i  z
)  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
7978rgen2a 2820 . . . 4  |-  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } A. z  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }
8043, 79pm3.2i 462 . . 3  |-  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )
81 pwexg 4585 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
82 rabexg 4549 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  _V )
83 istopg 20002 . . . 4  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  _V  ->  ( { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } ) ) )
8481, 82, 833syl 18 . . 3  |-  ( A  e.  V  ->  ( { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } ) ) )
8580, 84mpbiri 241 . 2  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  Top )
86 pwidg 3955 . . . . 5  |-  ( A  e.  V  ->  A  e.  ~P A )
87 0fin 7817 . . . . . . 7  |-  (/)  e.  Fin
8887orci 397 . . . . . 6  |-  ( (/)  e.  Fin  \/  A  =  (/) )
8988a1i 11 . . . . 5  |-  ( A  e.  V  ->  ( (/) 
e.  Fin  \/  A  =  (/) ) )
90 difeq2 3534 . . . . . . . . 9  |-  ( x  =  A  ->  ( A  \  x )  =  ( A  \  A
) )
91 difid 3747 . . . . . . . . 9  |-  ( A 
\  A )  =  (/)
9290, 91syl6eq 2521 . . . . . . . 8  |-  ( x  =  A  ->  ( A  \  x )  =  (/) )
9392eleq1d 2533 . . . . . . 7  |-  ( x  =  A  ->  (
( A  \  x
)  e.  Fin  <->  (/)  e.  Fin ) )
94 eqeq1 2475 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
9593, 94orbi12d 724 . . . . . 6  |-  ( x  =  A  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( (/)  e.  Fin  \/  A  =  (/) ) ) )
9695elrab 3184 . . . . 5  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( A  e.  ~P A  /\  ( (/)  e.  Fin  \/  A  =  (/) ) ) )
9786, 89, 96sylanbrc 677 . . . 4  |-  ( A  e.  V  ->  A  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )
98 elssuni 4219 . . . 4  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  A  C_  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
9997, 98syl 17 . . 3  |-  ( A  e.  V  ->  A  C_ 
U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
1004a1i 11 . . 3  |-  ( A  e.  V  ->  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  A
)
10199, 100eqssd 3435 . 2  |-  ( A  e.  V  ->  A  =  U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
102 istopon 20017 . 2  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  (TopOn `  A )  <->  ( {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  Top  /\  A  =  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } ) )
10385, 101, 102sylanbrc 677 1  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  (TopOn `  A
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376   A.wal 1450    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   {crab 2760   _Vcvv 3031    \ cdif 3387    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   U.cuni 4190   ` cfv 5589   Fincfn 7587   Topctop 19994  TopOnctopon 19995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-oadd 7204  df-er 7381  df-en 7588  df-fin 7591  df-top 19998  df-topon 20000
This theorem is referenced by:  fctop2  20097
  Copyright terms: Public domain W3C validator