MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fctop Unicode version

Theorem fctop 16573
Description: The finite complement topology on a set  A. Example 3 in [Munkres] p. 77. (Contributed by FL, 15-Aug-2006.) (Revised by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
fctop  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  (TopOn `  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem fctop
StepHypRef Expression
1 uniss 3748 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  C_  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
2 ssrab2 3179 . . . . . . . . 9  |-  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } 
C_  ~P A
3 sspwuni 3885 . . . . . . . . 9  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  ~P A 
<-> 
U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } 
C_  A )
42, 3mpbi 201 . . . . . . . 8  |-  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  A
51, 4syl6ss 3112 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  C_  A
)
6 vex 2730 . . . . . . . . 9  |-  y  e. 
_V
76uniex 4407 . . . . . . . 8  |-  U. y  e.  _V
87elpw 3536 . . . . . . 7  |-  ( U. y  e.  ~P A  <->  U. y  C_  A )
95, 8sylibr 205 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  ~P A )
10 uni0c 3751 . . . . . . . . . . 11  |-  ( U. y  =  (/)  <->  A. z  e.  y  z  =  (/) )
1110notbii 289 . . . . . . . . . 10  |-  ( -. 
U. y  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
12 rexnal 2518 . . . . . . . . . 10  |-  ( E. z  e.  y  -.  z  =  (/)  <->  -.  A. z  e.  y  z  =  (/) )
1311, 12bitr4i 245 . . . . . . . . 9  |-  ( -. 
U. y  =  (/)  <->  E. z  e.  y  -.  z  =  (/) )
14 ssel2 3098 . . . . . . . . . . . . . . . . 17  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  z  e.  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
15 difeq2 3205 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  z  ->  ( A  \  x )  =  ( A  \  z
) )
1615eleq1d 2319 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  z )  e.  Fin ) )
17 eqeq1 2259 . . . . . . . . . . . . . . . . . . 19  |-  ( x  =  z  ->  (
x  =  (/)  <->  z  =  (/) ) )
1816, 17orbi12d 693 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  z  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  z )  e. 
Fin  \/  z  =  (/) ) ) )
1918elrab 2860 . . . . . . . . . . . . . . . . 17  |-  ( z  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( z  e.  ~P A  /\  ( ( A 
\  z )  e. 
Fin  \/  z  =  (/) ) ) )
2014, 19sylib 190 . . . . . . . . . . . . . . . 16  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( z  e.  ~P A  /\  (
( A  \  z
)  e.  Fin  \/  z  =  (/) ) ) )
2120simprd 451 . . . . . . . . . . . . . . 15  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( ( A  \  z )  e. 
Fin  \/  z  =  (/) ) )
2221ord 368 . . . . . . . . . . . . . 14  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  ( A  \  z
)  e.  Fin  ->  z  =  (/) ) )
2322con1d 118 . . . . . . . . . . . . 13  |-  ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  ->  ( -.  z  =  (/)  ->  ( A  \  z )  e. 
Fin ) )
2423imp 420 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  z )  e. 
Fin )
25 elssuni 3753 . . . . . . . . . . . . . . . 16  |-  ( z  e.  y  ->  z  C_ 
U. y )
26 sscon 3224 . . . . . . . . . . . . . . . 16  |-  ( z 
C_  U. y  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
2725, 26syl 17 . . . . . . . . . . . . . . 15  |-  ( z  e.  y  ->  ( A  \  U. y ) 
C_  ( A  \ 
z ) )
28 ssfi 6968 . . . . . . . . . . . . . . 15  |-  ( ( ( A  \  z
)  e.  Fin  /\  ( A  \  U. y
)  C_  ( A  \  z ) )  -> 
( A  \  U. y )  e.  Fin )
2927, 28sylan2 462 . . . . . . . . . . . . . 14  |-  ( ( ( A  \  z
)  e.  Fin  /\  z  e.  y )  ->  ( A  \  U. y )  e.  Fin )
3029expcom 426 . . . . . . . . . . . . 13  |-  ( z  e.  y  ->  (
( A  \  z
)  e.  Fin  ->  ( A  \  U. y
)  e.  Fin )
)
3130ad2antlr 710 . . . . . . . . . . . 12  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  (
( A  \  z
)  e.  Fin  ->  ( A  \  U. y
)  e.  Fin )
)
3224, 31mpd 16 . . . . . . . . . . 11  |-  ( ( ( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  y )  /\  -.  z  =  (/) )  ->  ( A  \  U. y )  e.  Fin )
3332exp31 590 . . . . . . . . . 10  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( z  e.  y  ->  ( -.  z  =  (/)  ->  ( A  \  U. y )  e.  Fin ) ) )
3433rexlimdv 2628 . . . . . . . . 9  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( E. z  e.  y  -.  z  =  (/)  ->  ( A  \ 
U. y )  e. 
Fin ) )
3513, 34syl5bi 210 . . . . . . . 8  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( -.  U. y  =  (/)  ->  ( A  \  U. y )  e.  Fin ) )
3635con1d 118 . . . . . . 7  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( -.  ( A  \  U. y )  e.  Fin  ->  U. y  =  (/) ) )
3736orrd 369 . . . . . 6  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  ( ( A 
\  U. y )  e. 
Fin  \/  U. y  =  (/) ) )
38 difeq2 3205 . . . . . . . . 9  |-  ( x  =  U. y  -> 
( A  \  x
)  =  ( A 
\  U. y ) )
3938eleq1d 2319 . . . . . . . 8  |-  ( x  =  U. y  -> 
( ( A  \  x )  e.  Fin  <->  ( A  \  U. y )  e.  Fin ) )
40 eqeq1 2259 . . . . . . . 8  |-  ( x  =  U. y  -> 
( x  =  (/)  <->  U. y  =  (/) ) )
4139, 40orbi12d 693 . . . . . . 7  |-  ( x  =  U. y  -> 
( ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) )  <->  ( ( A 
\  U. y )  e. 
Fin  \/  U. y  =  (/) ) ) )
4241elrab 2860 . . . . . 6  |-  ( U. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( U. y  e. 
~P A  /\  (
( A  \  U. y )  e.  Fin  \/ 
U. y  =  (/) ) ) )
439, 37, 42sylanbrc 648 . . . . 5  |-  ( y 
C_  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
4443ax-gen 1536 . . . 4  |-  A. y
( y  C_  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  U. y  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
45 ssinss1 3304 . . . . . . . . 9  |-  ( y 
C_  A  ->  (
y  i^i  z )  C_  A )
466elpw 3536 . . . . . . . . 9  |-  ( y  e.  ~P A  <->  y  C_  A )
476inex1 4052 . . . . . . . . . 10  |-  ( y  i^i  z )  e. 
_V
4847elpw 3536 . . . . . . . . 9  |-  ( ( y  i^i  z )  e.  ~P A  <->  ( y  i^i  z )  C_  A
)
4945, 46, 483imtr4i 259 . . . . . . . 8  |-  ( y  e.  ~P A  -> 
( y  i^i  z
)  e.  ~P A
)
5049ad2antrr 709 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( y  i^i  z )  e.  ~P A )
51 difindi 3330 . . . . . . . . . . 11  |-  ( A 
\  ( y  i^i  z ) )  =  ( ( A  \ 
y )  u.  ( A  \  z ) )
52 unfi 7009 . . . . . . . . . . 11  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( ( A  \ 
y )  u.  ( A  \  z ) )  e.  Fin )
5351, 52syl5eqel 2337 . . . . . . . . . 10  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( A  \  (
y  i^i  z )
)  e.  Fin )
5453orcd 383 . . . . . . . . 9  |-  ( ( ( A  \  y
)  e.  Fin  /\  ( A  \  z
)  e.  Fin )  ->  ( ( A  \ 
( y  i^i  z
) )  e.  Fin  \/  ( y  i^i  z
)  =  (/) ) )
55 ineq1 3271 . . . . . . . . . . 11  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  ( (/)  i^i  z
) )
56 incom 3269 . . . . . . . . . . . 12  |-  ( (/)  i^i  z )  =  ( z  i^i  (/) )
57 in0 3387 . . . . . . . . . . . 12  |-  ( z  i^i  (/) )  =  (/)
5856, 57eqtri 2273 . . . . . . . . . . 11  |-  ( (/)  i^i  z )  =  (/)
5955, 58syl6eq 2301 . . . . . . . . . 10  |-  ( y  =  (/)  ->  ( y  i^i  z )  =  (/) )
6059olcd 384 . . . . . . . . 9  |-  ( y  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  e.  Fin  \/  (
y  i^i  z )  =  (/) ) )
61 ineq2 3272 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  ( y  i^i  (/) ) )
62 in0 3387 . . . . . . . . . . 11  |-  ( y  i^i  (/) )  =  (/)
6361, 62syl6eq 2301 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( y  i^i  z )  =  (/) )
6463olcd 384 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( ( A  \  ( y  i^i  z ) )  e.  Fin  \/  (
y  i^i  z )  =  (/) ) )
6554, 60, 64ccase2 919 . . . . . . . 8  |-  ( ( ( ( A  \ 
y )  e.  Fin  \/  y  =  (/) )  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) )  ->  ( ( A 
\  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) )
6665ad2ant2l 729 . . . . . . 7  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( ( A  \  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) )
6750, 66jca 520 . . . . . 6  |-  ( ( ( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) )  /\  (
z  e.  ~P A  /\  ( ( A  \ 
z )  e.  Fin  \/  z  =  (/) ) ) )  ->  ( (
y  i^i  z )  e.  ~P A  /\  (
( A  \  (
y  i^i  z )
)  e.  Fin  \/  ( y  i^i  z
)  =  (/) ) ) )
68 difeq2 3205 . . . . . . . . . 10  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
6968eleq1d 2319 . . . . . . . . 9  |-  ( x  =  y  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
70 eqeq1 2259 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  =  (/)  <->  y  =  (/) ) )
7169, 70orbi12d 693 . . . . . . . 8  |-  ( x  =  y  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  y )  e. 
Fin  \/  y  =  (/) ) ) )
7271elrab 2860 . . . . . . 7  |-  ( y  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( y  e.  ~P A  /\  ( ( A 
\  y )  e. 
Fin  \/  y  =  (/) ) ) )
7372, 19anbi12i 681 . . . . . 6  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )  <->  ( (
y  e.  ~P A  /\  ( ( A  \ 
y )  e.  Fin  \/  y  =  (/) ) )  /\  ( z  e. 
~P A  /\  (
( A  \  z
)  e.  Fin  \/  z  =  (/) ) ) ) )
74 difeq2 3205 . . . . . . . . 9  |-  ( x  =  ( y  i^i  z )  ->  ( A  \  x )  =  ( A  \  (
y  i^i  z )
) )
7574eleq1d 2319 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  ( y  i^i  z
) )  e.  Fin ) )
76 eqeq1 2259 . . . . . . . 8  |-  ( x  =  ( y  i^i  z )  ->  (
x  =  (/)  <->  ( y  i^i  z )  =  (/) ) )
7775, 76orbi12d 693 . . . . . . 7  |-  ( x  =  ( y  i^i  z )  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( ( A  \  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) ) )
7877elrab 2860 . . . . . 6  |-  ( ( y  i^i  z )  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( ( y  i^i  z )  e.  ~P A  /\  ( ( A 
\  ( y  i^i  z ) )  e. 
Fin  \/  ( y  i^i  z )  =  (/) ) ) )
7967, 73, 783imtr4i 259 . . . . 5  |-  ( ( y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  /\  z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )  -> 
( y  i^i  z
)  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
8079rgen2a 2571 . . . 4  |-  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } A. z  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }
8144, 80pm3.2i 443 . . 3  |-  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )
82 pwexg 4088 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
83 rabexg 4060 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  _V )
84 istopg 16473 . . . 4  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  _V  ->  ( { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } ) ) )
8582, 83, 843syl 20 . . 3  |-  ( A  e.  V  ->  ( { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) }  e.  Top  <->  ( A. y ( y  C_  { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ->  U. y  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )  /\  A. y  e.  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } A. z  e.  {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  ( y  i^i  z )  e. 
{ x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } ) ) )
8681, 85mpbiri 226 . 2  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  Top )
87 pwidg 3541 . . . . 5  |-  ( A  e.  V  ->  A  e.  ~P A )
88 0fin 6972 . . . . . . 7  |-  (/)  e.  Fin
8988orci 381 . . . . . 6  |-  ( (/)  e.  Fin  \/  A  =  (/) )
9089a1i 12 . . . . 5  |-  ( A  e.  V  ->  ( (/) 
e.  Fin  \/  A  =  (/) ) )
91 difeq2 3205 . . . . . . . . 9  |-  ( x  =  A  ->  ( A  \  x )  =  ( A  \  A
) )
92 difid 3428 . . . . . . . . 9  |-  ( A 
\  A )  =  (/)
9391, 92syl6eq 2301 . . . . . . . 8  |-  ( x  =  A  ->  ( A  \  x )  =  (/) )
9493eleq1d 2319 . . . . . . 7  |-  ( x  =  A  ->  (
( A  \  x
)  e.  Fin  <->  (/)  e.  Fin ) )
95 eqeq1 2259 . . . . . . 7  |-  ( x  =  A  ->  (
x  =  (/)  <->  A  =  (/) ) )
9694, 95orbi12d 693 . . . . . 6  |-  ( x  =  A  ->  (
( ( A  \  x )  e.  Fin  \/  x  =  (/) )  <->  ( (/)  e.  Fin  \/  A  =  (/) ) ) )
9796elrab 2860 . . . . 5  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  <-> 
( A  e.  ~P A  /\  ( (/)  e.  Fin  \/  A  =  (/) ) ) )
9887, 90, 97sylanbrc 648 . . . 4  |-  ( A  e.  V  ->  A  e.  { x  e.  ~P A  |  ( ( A  \  x )  e. 
Fin  \/  x  =  (/) ) } )
99 elssuni 3753 . . . 4  |-  ( A  e.  { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  ->  A  C_  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } )
10098, 99syl 17 . . 3  |-  ( A  e.  V  ->  A  C_ 
U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
1014a1i 12 . . 3  |-  ( A  e.  V  ->  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  C_  A
)
102100, 101eqssd 3117 . 2  |-  ( A  e.  V  ->  A  =  U. { x  e. 
~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) } )
103 istopon 16495 . 2  |-  ( { x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  (TopOn `  A )  <->  ( {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) }  e.  Top  /\  A  =  U. {
x  e.  ~P A  |  ( ( A 
\  x )  e. 
Fin  \/  x  =  (/) ) } ) )
10486, 102, 103sylanbrc 648 1  |-  ( A  e.  V  ->  { x  e.  ~P A  |  ( ( A  \  x
)  e.  Fin  \/  x  =  (/) ) }  e.  (TopOn `  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 5    -> wi 6    <-> wb 178    \/ wo 359    /\ wa 360   A.wal 1532    = wceq 1619    e. wcel 1621   A.wral 2509   E.wrex 2510   {crab 2512   _Vcvv 2727    \ cdif 3075    u. cun 3076    i^i cin 3077    C_ wss 3078   (/)c0 3362   ~Pcpw 3530   U.cuni 3727   ` cfv 4592   Fincfn 6749   Topctop 16463  TopOnctopon 16464
This theorem is referenced by:  fctop2  16574
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-recs 6274  df-rdg 6309  df-oadd 6369  df-er 6546  df-en 6750  df-fin 6753  df-top 16468  df-topon 16471
  Copyright terms: Public domain W3C validator