MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst4 Structured version   Unicode version

Theorem fconst4 6037
Description: Two ways to express a constant function. (Contributed by NM, 8-Mar-2007.)
Assertion
Ref Expression
fconst4  |-  ( F : A --> { B } 
<->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) )

Proof of Theorem fconst4
StepHypRef Expression
1 fconst3 6036 . 2  |-  ( F : A --> { B } 
<->  ( F  Fn  A  /\  A  C_  ( `' F " { B } ) ) )
2 cnvimass 5269 . . . . . 6  |-  ( `' F " { B } )  C_  dom  F
3 fndm 5588 . . . . . 6  |-  ( F  Fn  A  ->  dom  F  =  A )
42, 3syl5sseq 3465 . . . . 5  |-  ( F  Fn  A  ->  ( `' F " { B } )  C_  A
)
54biantrurd 506 . . . 4  |-  ( F  Fn  A  ->  ( A  C_  ( `' F " { B } )  <-> 
( ( `' F " { B } ) 
C_  A  /\  A  C_  ( `' F " { B } ) ) ) )
6 eqss 3432 . . . 4  |-  ( ( `' F " { B } )  =  A  <-> 
( ( `' F " { B } ) 
C_  A  /\  A  C_  ( `' F " { B } ) ) )
75, 6syl6bbr 263 . . 3  |-  ( F  Fn  A  ->  ( A  C_  ( `' F " { B } )  <-> 
( `' F " { B } )  =  A ) )
87pm5.32i 635 . 2  |-  ( ( F  Fn  A  /\  A  C_  ( `' F " { B } ) )  <->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) )
91, 8bitri 249 1  |-  ( F : A --> { B } 
<->  ( F  Fn  A  /\  ( `' F " { B } )  =  A ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 367    = wceq 1399    C_ wss 3389   {csn 3944   `'ccnv 4912   dom cdm 4913   "cima 4916    Fn wfn 5491   -->wf 5492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pr 4601
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-fv 5504
This theorem is referenced by:  lkr0f  35232
  Copyright terms: Public domain W3C validator