MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fconst2g Structured version   Unicode version

Theorem fconst2g 6036
Description: A constant function expressed as a Cartesian product. (Contributed by NM, 27-Nov-2007.)
Assertion
Ref Expression
fconst2g  |-  ( B  e.  C  ->  ( F : A --> { B } 
<->  F  =  ( A  X.  { B }
) ) )

Proof of Theorem fconst2g
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 fvconst 6001 . . . . . . 7  |-  ( ( F : A --> { B }  /\  x  e.  A
)  ->  ( F `  x )  =  B )
21adantlr 714 . . . . . 6  |-  ( ( ( F : A --> { B }  /\  B  e.  C )  /\  x  e.  A )  ->  ( F `  x )  =  B )
3 fvconst2g 6035 . . . . . . 7  |-  ( ( B  e.  C  /\  x  e.  A )  ->  ( ( A  X.  { B } ) `  x )  =  B )
43adantll 713 . . . . . 6  |-  ( ( ( F : A --> { B }  /\  B  e.  C )  /\  x  e.  A )  ->  (
( A  X.  { B } ) `  x
)  =  B )
52, 4eqtr4d 2496 . . . . 5  |-  ( ( ( F : A --> { B }  /\  B  e.  C )  /\  x  e.  A )  ->  ( F `  x )  =  ( ( A  X.  { B }
) `  x )
)
65ralrimiva 2827 . . . 4  |-  ( ( F : A --> { B }  /\  B  e.  C
)  ->  A. x  e.  A  ( F `  x )  =  ( ( A  X.  { B } ) `  x
) )
7 ffn 5662 . . . . 5  |-  ( F : A --> { B }  ->  F  Fn  A
)
8 fnconstg 5701 . . . . 5  |-  ( B  e.  C  ->  ( A  X.  { B }
)  Fn  A )
9 eqfnfv 5901 . . . . 5  |-  ( ( F  Fn  A  /\  ( A  X.  { B } )  Fn  A
)  ->  ( F  =  ( A  X.  { B } )  <->  A. x  e.  A  ( F `  x )  =  ( ( A  X.  { B } ) `  x
) ) )
107, 8, 9syl2an 477 . . . 4  |-  ( ( F : A --> { B }  /\  B  e.  C
)  ->  ( F  =  ( A  X.  { B } )  <->  A. x  e.  A  ( F `  x )  =  ( ( A  X.  { B } ) `  x
) ) )
116, 10mpbird 232 . . 3  |-  ( ( F : A --> { B }  /\  B  e.  C
)  ->  F  =  ( A  X.  { B } ) )
1211expcom 435 . 2  |-  ( B  e.  C  ->  ( F : A --> { B }  ->  F  =  ( A  X.  { B } ) ) )
13 fconstg 5700 . . 3  |-  ( B  e.  C  ->  ( A  X.  { B }
) : A --> { B } )
14 feq1 5645 . . 3  |-  ( F  =  ( A  X.  { B } )  -> 
( F : A --> { B }  <->  ( A  X.  { B } ) : A --> { B } ) )
1513, 14syl5ibrcom 222 . 2  |-  ( B  e.  C  ->  ( F  =  ( A  X.  { B } )  ->  F : A --> { B } ) )
1612, 15impbid 191 1  |-  ( B  e.  C  ->  ( F : A --> { B } 
<->  F  =  ( A  X.  { B }
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2796   {csn 3980    X. cxp 4941    Fn wfn 5516   -->wf 5517   ` cfv 5521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1954  ax-ext 2431  ax-sep 4516  ax-nul 4524  ax-pow 4573  ax-pr 4634
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2265  df-mo 2266  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2602  df-ne 2647  df-ral 2801  df-rex 2802  df-rab 2805  df-v 3074  df-sbc 3289  df-csb 3391  df-dif 3434  df-un 3436  df-in 3438  df-ss 3445  df-nul 3741  df-if 3895  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4195  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4739  df-xp 4949  df-rel 4950  df-cnv 4951  df-co 4952  df-dm 4953  df-rn 4954  df-res 4955  df-ima 4956  df-iota 5484  df-fun 5523  df-fn 5524  df-f 5525  df-fv 5529
This theorem is referenced by:  fconst2  6038  fconst5  6039  repsdf2  12529  cnconst  19015
  Copyright terms: Public domain W3C validator