MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcof1 Structured version   Unicode version

Theorem fcof1 6103
Description: An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
Assertion
Ref Expression
fcof1  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )

Proof of Theorem fcof1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 457 . 2  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A --> B )
2 simprr 756 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( F `  x )  =  ( F `  y ) )
32fveq2d 5806 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( R `  ( F `  x
) )  =  ( R `  ( F `
 y ) ) )
4 simpll 753 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  F : A
--> B )
5 simprll 761 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  x  e.  A )
6 fvco3 5880 . . . . . . . 8  |-  ( ( F : A --> B  /\  x  e.  A )  ->  ( ( R  o.  F ) `  x
)  =  ( R `
 ( F `  x ) ) )
74, 5, 6syl2anc 661 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( R `  ( F `
 x ) ) )
8 simprlr 762 . . . . . . . 8  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  y  e.  A )
9 fvco3 5880 . . . . . . . 8  |-  ( ( F : A --> B  /\  y  e.  A )  ->  ( ( R  o.  F ) `  y
)  =  ( R `
 ( F `  y ) ) )
104, 8, 9syl2anc 661 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  y )  =  ( R `  ( F `
 y ) ) )
113, 7, 103eqtr4d 2505 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( ( R  o.  F
) `  y )
)
12 simplr 754 . . . . . . 7  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( R  o.  F )  =  (  _I  |`  A )
)
1312fveq1d 5804 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  x )  =  ( (  _I  |`  A ) `
 x ) )
1412fveq1d 5804 . . . . . 6  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( ( R  o.  F ) `  y )  =  ( (  _I  |`  A ) `
 y ) )
1511, 13, 143eqtr3d 2503 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  x )  =  ( (  _I  |`  A ) `
 y ) )
16 fvresi 6016 . . . . . 6  |-  ( x  e.  A  ->  (
(  _I  |`  A ) `
 x )  =  x )
175, 16syl 16 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  x )  =  x )
18 fvresi 6016 . . . . . 6  |-  ( y  e.  A  ->  (
(  _I  |`  A ) `
 y )  =  y )
198, 18syl 16 . . . . 5  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  ( (  _I  |`  A ) `  y )  =  y )
2015, 17, 193eqtr3d 2503 . . . 4  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( (
x  e.  A  /\  y  e.  A )  /\  ( F `  x
)  =  ( F `
 y ) ) )  ->  x  =  y )
2120expr 615 . . 3  |-  ( ( ( F : A --> B  /\  ( R  o.  F )  =  (  _I  |`  A )
)  /\  ( x  e.  A  /\  y  e.  A ) )  -> 
( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
2221ralrimivva 2914 . 2  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  A. x  e.  A  A. y  e.  A  ( ( F `  x )  =  ( F `  y )  ->  x  =  y ) )
23 dff13 6083 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  A. x  e.  A  A. y  e.  A  (
( F `  x
)  =  ( F `
 y )  ->  x  =  y )
) )
241, 22, 23sylanbrc 664 1  |-  ( ( F : A --> B  /\  ( R  o.  F
)  =  (  _I  |`  A ) )  ->  F : A -1-1-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2799    _I cid 4742    |` cres 4953    o. ccom 4955   -->wf 5525   -1-1->wf1 5526   ` cfv 5529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rex 2805  df-rab 2808  df-v 3080  df-sbc 3295  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-br 4404  df-opab 4462  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fv 5537
This theorem is referenced by:  fcof1o  6109
  Copyright terms: Public domain W3C validator