MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fco2 Structured version   Unicode version

Theorem fco2 5757
Description: Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
Assertion
Ref Expression
fco2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )

Proof of Theorem fco2
StepHypRef Expression
1 fco 5756 . 2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( F  |`  B )  o.  G
) : A --> C )
2 frn 5752 . . . . 5  |-  ( G : A --> B  ->  ran  G  C_  B )
3 cores 5358 . . . . 5  |-  ( ran 
G  C_  B  ->  ( ( F  |`  B )  o.  G )  =  ( F  o.  G
) )
42, 3syl 17 . . . 4  |-  ( G : A --> B  -> 
( ( F  |`  B )  o.  G
)  =  ( F  o.  G ) )
54adantl 467 . . 3  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( F  |`  B )  o.  G
)  =  ( F  o.  G ) )
65feq1d 5732 . 2  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( ( ( F  |`  B )  o.  G ) : A --> C 
<->  ( F  o.  G
) : A --> C ) )
71, 6mpbid 213 1  |-  ( ( ( F  |`  B ) : B --> C  /\  G : A --> B )  ->  ( F  o.  G ) : A --> C )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    C_ wss 3442   ran crn 4855    |` cres 4856    o. ccom 4858   -->wf 5597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pr 4661
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-br 4427  df-opab 4485  df-id 4769  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-fun 5603  df-fn 5604  df-f 5605
This theorem is referenced by:  fsuppcor  7923  prdsringd  17775  prdscrngd  17776  prds1  17777  prdstmdd  21069  prdsxmslem2  21475  eulerpartlemmf  29034  sseqf  29051  poimirlem9  31652  ftc1anclem3  31722  fco2d  36237
  Copyright terms: Public domain W3C validator