MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcnvres Structured version   Unicode version

Theorem fcnvres 5588
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
fcnvres  |-  ( F : A --> B  ->  `' ( F  |`  A )  =  ( `' F  |`  B ) )

Proof of Theorem fcnvres
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5206 . 2  |-  Rel  `' ( F  |`  A )
2 relres 5138 . 2  |-  Rel  ( `' F  |`  B )
3 opelf 5574 . . . . . . 7  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  (
x  e.  A  /\  y  e.  B )
)
43simpld 459 . . . . . 6  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  x  e.  A )
54ex 434 . . . . 5  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  ->  x  e.  A ) )
65pm4.71d 634 . . . 4  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  <->  ( <. x ,  y >.  e.  F  /\  x  e.  A
) ) )
7 vex 2975 . . . . . 6  |-  y  e. 
_V
8 vex 2975 . . . . . 6  |-  x  e. 
_V
97, 8opelcnv 5021 . . . . 5  |-  ( <.
y ,  x >.  e.  `' ( F  |`  A )  <->  <. x ,  y >.  e.  ( F  |`  A ) )
107opelres 5116 . . . . 5  |-  ( <.
x ,  y >.  e.  ( F  |`  A )  <-> 
( <. x ,  y
>.  e.  F  /\  x  e.  A ) )
119, 10bitri 249 . . . 4  |-  ( <.
y ,  x >.  e.  `' ( F  |`  A )  <->  ( <. x ,  y >.  e.  F  /\  x  e.  A
) )
126, 11syl6bbr 263 . . 3  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  <->  <. y ,  x >.  e.  `' ( F  |`  A ) ) )
133simprd 463 . . . . . 6  |-  ( ( F : A --> B  /\  <.
x ,  y >.  e.  F )  ->  y  e.  B )
1413ex 434 . . . . 5  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  ->  y  e.  B ) )
1514pm4.71d 634 . . . 4  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  <->  ( <. x ,  y >.  e.  F  /\  y  e.  B
) ) )
168opelres 5116 . . . . 5  |-  ( <.
y ,  x >.  e.  ( `' F  |`  B )  <->  ( <. y ,  x >.  e.  `' F  /\  y  e.  B
) )
177, 8opelcnv 5021 . . . . . 6  |-  ( <.
y ,  x >.  e.  `' F  <->  <. x ,  y
>.  e.  F )
1817anbi1i 695 . . . . 5  |-  ( (
<. y ,  x >.  e.  `' F  /\  y  e.  B )  <->  ( <. x ,  y >.  e.  F  /\  y  e.  B
) )
1916, 18bitri 249 . . . 4  |-  ( <.
y ,  x >.  e.  ( `' F  |`  B )  <->  ( <. x ,  y >.  e.  F  /\  y  e.  B
) )
2015, 19syl6bbr 263 . . 3  |-  ( F : A --> B  -> 
( <. x ,  y
>.  e.  F  <->  <. y ,  x >.  e.  ( `' F  |`  B ) ) )
2112, 20bitr3d 255 . 2  |-  ( F : A --> B  -> 
( <. y ,  x >.  e.  `' ( F  |`  A )  <->  <. y ,  x >.  e.  ( `' F  |`  B ) ) )
221, 2, 21eqrelrdv 4936 1  |-  ( F : A --> B  ->  `' ( F  |`  A )  =  ( `' F  |`  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   <.cop 3883   `'ccnv 4839    |` cres 4842   -->wf 5414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4413  ax-nul 4421  ax-pr 4531
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-rab 2724  df-v 2974  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-sn 3878  df-pr 3880  df-op 3884  df-br 4293  df-opab 4351  df-xp 4846  df-rel 4847  df-cnv 4848  df-dm 4850  df-rn 4851  df-res 4852  df-fun 5420  df-fn 5421  df-f 5422
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator