MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsrest Structured version   Unicode version

Theorem fclsrest 20398
Description: The set of cluster points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fclsrest  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Jt  Y )  fClus  ( Ft  Y ) )  =  ( ( J  fClus  F )  i^i  Y ) )

Proof of Theorem fclsrest
Dummy variables  s 
t  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 997 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  J  e.  (TopOn `  X )
)
2 filelss 20226 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  Y  C_  X )
323adant1 1015 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  Y  C_  X )
4 resttopon 19535 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
51, 3, 4syl2anc 661 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
6 filfbas 20222 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
763ad2ant2 1019 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  F  e.  ( fBas `  X
) )
8 simp3 999 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  Y  e.  F )
9 fbncp 20213 . . . . . . 7  |-  ( ( F  e.  ( fBas `  X )  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
107, 8, 9syl2anc 661 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
11 simp2 998 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  F  e.  ( Fil `  X
) )
12 trfil3 20262 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  C_  X )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
1311, 3, 12syl2anc 661 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
1410, 13mpbird 232 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  ( Ft  Y )  e.  ( Fil `  Y ) )
15 fclsopn 20388 . . . . 5  |-  ( ( ( Jt  Y )  e.  (TopOn `  Y )  /\  ( Ft  Y )  e.  ( Fil `  Y ) )  ->  ( x  e.  ( ( Jt  Y ) 
fClus  ( Ft  Y ) )  <->  ( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) ) ) ) )
165, 14, 15syl2anc 661 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fClus  ( Ft  Y ) )  <->  ( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) ) ) ) )
17 in32 3695 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  s )  i^i  Y )  =  ( ( u  i^i 
Y )  i^i  s
)
18 ineq2 3679 . . . . . . . . . . . . . 14  |-  ( s  =  t  ->  (
( u  i^i  Y
)  i^i  s )  =  ( ( u  i^i  Y )  i^i  t ) )
1917, 18syl5eq 2496 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
( u  i^i  s
)  i^i  Y )  =  ( ( u  i^i  Y )  i^i  t ) )
2019neeq1d 2720 . . . . . . . . . . . 12  |-  ( s  =  t  ->  (
( ( u  i^i  s )  i^i  Y
)  =/=  (/)  <->  ( (
u  i^i  Y )  i^i  t )  =/=  (/) ) )
2120rspccv 3193 . . . . . . . . . . 11  |-  ( A. s  e.  F  (
( u  i^i  s
)  i^i  Y )  =/=  (/)  ->  ( t  e.  F  ->  ( ( u  i^i  Y )  i^i  t )  =/=  (/) ) )
22 inss1 3703 . . . . . . . . . . . . 13  |-  ( u  i^i  Y )  C_  u
23 ssrin 3708 . . . . . . . . . . . . 13  |-  ( ( u  i^i  Y ) 
C_  u  ->  (
( u  i^i  Y
)  i^i  t )  C_  ( u  i^i  t
) )
2422, 23ax-mp 5 . . . . . . . . . . . 12  |-  ( ( u  i^i  Y )  i^i  t )  C_  ( u  i^i  t
)
25 ssn0 3804 . . . . . . . . . . . 12  |-  ( ( ( ( u  i^i 
Y )  i^i  t
)  C_  ( u  i^i  t )  /\  (
( u  i^i  Y
)  i^i  t )  =/=  (/) )  ->  (
u  i^i  t )  =/=  (/) )
2624, 25mpan 670 . . . . . . . . . . 11  |-  ( ( ( u  i^i  Y
)  i^i  t )  =/=  (/)  ->  ( u  i^i  t )  =/=  (/) )
2721, 26syl6 33 . . . . . . . . . 10  |-  ( A. s  e.  F  (
( u  i^i  s
)  i^i  Y )  =/=  (/)  ->  ( t  e.  F  ->  ( u  i^i  t )  =/=  (/) ) )
2827ralrimiv 2855 . . . . . . . . 9  |-  ( A. s  e.  F  (
( u  i^i  s
)  i^i  Y )  =/=  (/)  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) )
2911ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  x  e.  Y )  /\  u  e.  J )  /\  s  e.  F )  ->  F  e.  ( Fil `  X
) )
30 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  x  e.  Y )  /\  u  e.  J )  /\  s  e.  F )  ->  s  e.  F )
318ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  x  e.  Y )  /\  u  e.  J )  /\  s  e.  F )  ->  Y  e.  F )
32 filin 20228 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  s  e.  F  /\  Y  e.  F )  ->  (
s  i^i  Y )  e.  F )
3329, 30, 31, 32syl3anc 1229 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  x  e.  Y )  /\  u  e.  J )  /\  s  e.  F )  ->  (
s  i^i  Y )  e.  F )
34 ineq2 3679 . . . . . . . . . . . . . 14  |-  ( t  =  ( s  i^i 
Y )  ->  (
u  i^i  t )  =  ( u  i^i  ( s  i^i  Y
) ) )
35 inass 3693 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  s )  i^i  Y )  =  ( u  i^i  (
s  i^i  Y )
)
3634, 35syl6eqr 2502 . . . . . . . . . . . . 13  |-  ( t  =  ( s  i^i 
Y )  ->  (
u  i^i  t )  =  ( ( u  i^i  s )  i^i 
Y ) )
3736neeq1d 2720 . . . . . . . . . . . 12  |-  ( t  =  ( s  i^i 
Y )  ->  (
( u  i^i  t
)  =/=  (/)  <->  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) )
3837rspcv 3192 . . . . . . . . . . 11  |-  ( ( s  i^i  Y )  e.  F  ->  ( A. t  e.  F  ( u  i^i  t
)  =/=  (/)  ->  (
( u  i^i  s
)  i^i  Y )  =/=  (/) ) )
3933, 38syl 16 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  x  e.  Y )  /\  u  e.  J )  /\  s  e.  F )  ->  ( A. t  e.  F  ( u  i^i  t
)  =/=  (/)  ->  (
( u  i^i  s
)  i^i  Y )  =/=  (/) ) )
4039ralrimdva 2861 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  u  e.  J )  ->  ( A. t  e.  F  ( u  i^i  t
)  =/=  (/)  ->  A. s  e.  F  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) )
4128, 40impbid2 204 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  u  e.  J )  ->  ( A. s  e.  F  ( ( u  i^i  s )  i^i  Y
)  =/=  (/)  <->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) )
4241imbi2d 316 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  u  e.  J )  ->  (
( x  e.  u  ->  A. s  e.  F  ( ( u  i^i  s )  i^i  Y
)  =/=  (/) )  <->  ( x  e.  u  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) ) )
4342ralbidva 2879 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. u  e.  J  ( x  e.  u  ->  A. s  e.  F  ( ( u  i^i  s )  i^i  Y
)  =/=  (/) )  <->  A. u  e.  J  ( x  e.  u  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) ) )
44 vex 3098 . . . . . . . . 9  |-  u  e. 
_V
4544inex1 4578 . . . . . . . 8  |-  ( u  i^i  Y )  e. 
_V
4645a1i 11 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  u  e.  J )  ->  (
u  i^i  Y )  e.  _V )
47 elrest 14702 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  F )  ->  (
y  e.  ( Jt  Y )  <->  E. u  e.  J  y  =  ( u  i^i  Y ) ) )
48473adant2 1016 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
y  e.  ( Jt  Y )  <->  E. u  e.  J  y  =  ( u  i^i  Y ) ) )
4948adantr 465 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
y  e.  ( Jt  Y )  <->  E. u  e.  J  y  =  ( u  i^i  Y ) ) )
50 eleq2 2516 . . . . . . . . 9  |-  ( y  =  ( u  i^i 
Y )  ->  (
x  e.  y  <->  x  e.  ( u  i^i  Y ) ) )
51 elin 3672 . . . . . . . . . . 11  |-  ( x  e.  ( u  i^i 
Y )  <->  ( x  e.  u  /\  x  e.  Y ) )
5251rbaib 906 . . . . . . . . . 10  |-  ( x  e.  Y  ->  (
x  e.  ( u  i^i  Y )  <->  x  e.  u ) )
5352adantl 466 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( u  i^i  Y )  <->  x  e.  u ) )
5450, 53sylan9bbr 700 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( u  i^i  Y ) )  ->  ( x  e.  y  <->  x  e.  u
) )
55 vex 3098 . . . . . . . . . . . 12  |-  s  e. 
_V
5655inex1 4578 . . . . . . . . . . 11  |-  ( s  i^i  Y )  e. 
_V
5756a1i 11 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  s  e.  F )  ->  (
s  i^i  Y )  e.  _V )
58 elrest 14702 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  (
z  e.  ( Ft  Y )  <->  E. s  e.  F  z  =  ( s  i^i  Y ) ) )
59583adant1 1015 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
z  e.  ( Ft  Y )  <->  E. s  e.  F  z  =  ( s  i^i  Y ) ) )
6059adantr 465 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
z  e.  ( Ft  Y )  <->  E. s  e.  F  z  =  ( s  i^i  Y ) ) )
61 ineq2 3679 . . . . . . . . . . . 12  |-  ( z  =  ( s  i^i 
Y )  ->  (
y  i^i  z )  =  ( y  i^i  ( s  i^i  Y
) ) )
6261adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  =  ( s  i^i  Y
) )  ->  (
y  i^i  z )  =  ( y  i^i  ( s  i^i  Y
) ) )
6362neeq1d 2720 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  =  ( s  i^i  Y
) )  ->  (
( y  i^i  z
)  =/=  (/)  <->  ( y  i^i  ( s  i^i  Y
) )  =/=  (/) ) )
6457, 60, 63ralxfr2d 4653 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) 
<-> 
A. s  e.  F  ( y  i^i  (
s  i^i  Y )
)  =/=  (/) ) )
65 ineq1 3678 . . . . . . . . . . . 12  |-  ( y  =  ( u  i^i 
Y )  ->  (
y  i^i  ( s  i^i  Y ) )  =  ( ( u  i^i 
Y )  i^i  (
s  i^i  Y )
) )
66 inindir 3701 . . . . . . . . . . . 12  |-  ( ( u  i^i  s )  i^i  Y )  =  ( ( u  i^i 
Y )  i^i  (
s  i^i  Y )
)
6765, 66syl6eqr 2502 . . . . . . . . . . 11  |-  ( y  =  ( u  i^i 
Y )  ->  (
y  i^i  ( s  i^i  Y ) )  =  ( ( u  i^i  s )  i^i  Y
) )
6867neeq1d 2720 . . . . . . . . . 10  |-  ( y  =  ( u  i^i 
Y )  ->  (
( y  i^i  (
s  i^i  Y )
)  =/=  (/)  <->  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) )
6968ralbidv 2882 . . . . . . . . 9  |-  ( y  =  ( u  i^i 
Y )  ->  ( A. s  e.  F  ( y  i^i  (
s  i^i  Y )
)  =/=  (/)  <->  A. s  e.  F  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) )
7064, 69sylan9bb 699 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( u  i^i  Y ) )  ->  ( A. z  e.  ( Ft  Y
) ( y  i^i  z )  =/=  (/)  <->  A. s  e.  F  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) )
7154, 70imbi12d 320 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( u  i^i  Y ) )  ->  ( (
x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) )  <->  ( x  e.  u  ->  A. s  e.  F  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) ) )
7246, 49, 71ralxfr2d 4653 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. y  e.  ( Jt  Y ) ( x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) )  <->  A. u  e.  J  ( x  e.  u  ->  A. s  e.  F  ( ( u  i^i  s )  i^i  Y
)  =/=  (/) ) ) )
731adantr 465 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  J  e.  (TopOn `  X )
)
7411adantr 465 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  F  e.  ( Fil `  X
) )
753sselda 3489 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  x  e.  X )
76 fclsopn 20388 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fClus  F )  <->  ( x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) ) ) )
7776baibd 909 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  X )  ->  (
x  e.  ( J 
fClus  F )  <->  A. u  e.  J  ( x  e.  u  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) ) )
7873, 74, 75, 77syl21anc 1228 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( J 
fClus  F )  <->  A. u  e.  J  ( x  e.  u  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) ) )
7943, 72, 783bitr4d 285 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. y  e.  ( Jt  Y ) ( x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) )  <->  x  e.  ( J  fClus  F ) ) )
8079pm5.32da 641 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) ) )  <->  ( x  e.  Y  /\  x  e.  ( J  fClus  F ) ) ) )
8116, 80bitrd 253 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fClus  ( Ft  Y ) )  <->  ( x  e.  Y  /\  x  e.  ( J  fClus  F ) ) ) )
82 elin 3672 . . . 4  |-  ( x  e.  ( ( J 
fClus  F )  i^i  Y
)  <->  ( x  e.  ( J  fClus  F )  /\  x  e.  Y
) )
83 ancom 450 . . . 4  |-  ( ( x  e.  ( J 
fClus  F )  /\  x  e.  Y )  <->  ( x  e.  Y  /\  x  e.  ( J  fClus  F ) ) )
8482, 83bitri 249 . . 3  |-  ( x  e.  ( ( J 
fClus  F )  i^i  Y
)  <->  ( x  e.  Y  /\  x  e.  ( J  fClus  F ) ) )
8581, 84syl6bbr 263 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fClus  ( Ft  Y ) )  <->  x  e.  ( ( J  fClus  F )  i^i  Y ) ) )
8685eqrdv 2440 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Jt  Y )  fClus  ( Ft  Y ) )  =  ( ( J  fClus  F )  i^i  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794   _Vcvv 3095    \ cdif 3458    i^i cin 3460    C_ wss 3461   (/)c0 3770   ` cfv 5578  (class class class)co 6281   ↾t crest 14695   fBascfbas 18280  TopOnctopon 19268   Filcfil 20219    fClus cfcls 20310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7044  df-rdg 7078  df-oadd 7136  df-er 7313  df-en 7519  df-fin 7522  df-fi 7873  df-rest 14697  df-topgen 14718  df-fbas 18290  df-fg 18291  df-top 19272  df-bases 19274  df-topon 19275  df-cld 19393  df-ntr 19394  df-cls 19395  df-fil 20220  df-fcls 20315
This theorem is referenced by:  relcmpcmet  21628
  Copyright terms: Public domain W3C validator