MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsrest Structured version   Visualization version   Unicode version

Theorem fclsrest 21039
Description: The set of cluster points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
fclsrest  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Jt  Y )  fClus  ( Ft  Y ) )  =  ( ( J  fClus  F )  i^i  Y ) )

Proof of Theorem fclsrest
Dummy variables  s 
t  u  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1008 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  J  e.  (TopOn `  X )
)
2 filelss 20867 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  Y  C_  X )
323adant1 1026 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  Y  C_  X )
4 resttopon 20177 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  Y  C_  X )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
51, 3, 4syl2anc 667 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  ( Jt  Y )  e.  (TopOn `  Y ) )
6 filfbas 20863 . . . . . . . 8  |-  ( F  e.  ( Fil `  X
)  ->  F  e.  ( fBas `  X )
)
763ad2ant2 1030 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  F  e.  ( fBas `  X
) )
8 simp3 1010 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  Y  e.  F )
9 fbncp 20854 . . . . . . 7  |-  ( ( F  e.  ( fBas `  X )  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
107, 8, 9syl2anc 667 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  -.  ( X  \  Y )  e.  F )
11 simp2 1009 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  F  e.  ( Fil `  X
) )
12 trfil3 20903 . . . . . . 7  |-  ( ( F  e.  ( Fil `  X )  /\  Y  C_  X )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
1311, 3, 12syl2anc 667 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Ft  Y )  e.  ( Fil `  Y )  <->  -.  ( X  \  Y
)  e.  F ) )
1410, 13mpbird 236 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  ( Ft  Y )  e.  ( Fil `  Y ) )
15 fclsopn 21029 . . . . 5  |-  ( ( ( Jt  Y )  e.  (TopOn `  Y )  /\  ( Ft  Y )  e.  ( Fil `  Y ) )  ->  ( x  e.  ( ( Jt  Y ) 
fClus  ( Ft  Y ) )  <->  ( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) ) ) ) )
165, 14, 15syl2anc 667 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fClus  ( Ft  Y ) )  <->  ( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) ) ) ) )
17 in32 3644 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  s )  i^i  Y )  =  ( ( u  i^i 
Y )  i^i  s
)
18 ineq2 3628 . . . . . . . . . . . . . 14  |-  ( s  =  t  ->  (
( u  i^i  Y
)  i^i  s )  =  ( ( u  i^i  Y )  i^i  t ) )
1917, 18syl5eq 2497 . . . . . . . . . . . . 13  |-  ( s  =  t  ->  (
( u  i^i  s
)  i^i  Y )  =  ( ( u  i^i  Y )  i^i  t ) )
2019neeq1d 2683 . . . . . . . . . . . 12  |-  ( s  =  t  ->  (
( ( u  i^i  s )  i^i  Y
)  =/=  (/)  <->  ( (
u  i^i  Y )  i^i  t )  =/=  (/) ) )
2120rspccv 3147 . . . . . . . . . . 11  |-  ( A. s  e.  F  (
( u  i^i  s
)  i^i  Y )  =/=  (/)  ->  ( t  e.  F  ->  ( ( u  i^i  Y )  i^i  t )  =/=  (/) ) )
22 inss1 3652 . . . . . . . . . . . . 13  |-  ( u  i^i  Y )  C_  u
23 ssrin 3657 . . . . . . . . . . . . 13  |-  ( ( u  i^i  Y ) 
C_  u  ->  (
( u  i^i  Y
)  i^i  t )  C_  ( u  i^i  t
) )
2422, 23ax-mp 5 . . . . . . . . . . . 12  |-  ( ( u  i^i  Y )  i^i  t )  C_  ( u  i^i  t
)
25 ssn0 3767 . . . . . . . . . . . 12  |-  ( ( ( ( u  i^i 
Y )  i^i  t
)  C_  ( u  i^i  t )  /\  (
( u  i^i  Y
)  i^i  t )  =/=  (/) )  ->  (
u  i^i  t )  =/=  (/) )
2624, 25mpan 676 . . . . . . . . . . 11  |-  ( ( ( u  i^i  Y
)  i^i  t )  =/=  (/)  ->  ( u  i^i  t )  =/=  (/) )
2721, 26syl6 34 . . . . . . . . . 10  |-  ( A. s  e.  F  (
( u  i^i  s
)  i^i  Y )  =/=  (/)  ->  ( t  e.  F  ->  ( u  i^i  t )  =/=  (/) ) )
2827ralrimiv 2800 . . . . . . . . 9  |-  ( A. s  e.  F  (
( u  i^i  s
)  i^i  Y )  =/=  (/)  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) )
2911ad3antrrr 736 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  x  e.  Y )  /\  u  e.  J )  /\  s  e.  F )  ->  F  e.  ( Fil `  X
) )
30 simpr 463 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  x  e.  Y )  /\  u  e.  J )  /\  s  e.  F )  ->  s  e.  F )
318ad3antrrr 736 . . . . . . . . . . . 12  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  x  e.  Y )  /\  u  e.  J )  /\  s  e.  F )  ->  Y  e.  F )
32 filin 20869 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  s  e.  F  /\  Y  e.  F )  ->  (
s  i^i  Y )  e.  F )
3329, 30, 31, 32syl3anc 1268 . . . . . . . . . . 11  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  x  e.  Y )  /\  u  e.  J )  /\  s  e.  F )  ->  (
s  i^i  Y )  e.  F )
34 ineq2 3628 . . . . . . . . . . . . . 14  |-  ( t  =  ( s  i^i 
Y )  ->  (
u  i^i  t )  =  ( u  i^i  ( s  i^i  Y
) ) )
35 inass 3642 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  s )  i^i  Y )  =  ( u  i^i  (
s  i^i  Y )
)
3634, 35syl6eqr 2503 . . . . . . . . . . . . 13  |-  ( t  =  ( s  i^i 
Y )  ->  (
u  i^i  t )  =  ( ( u  i^i  s )  i^i 
Y ) )
3736neeq1d 2683 . . . . . . . . . . . 12  |-  ( t  =  ( s  i^i 
Y )  ->  (
( u  i^i  t
)  =/=  (/)  <->  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) )
3837rspcv 3146 . . . . . . . . . . 11  |-  ( ( s  i^i  Y )  e.  F  ->  ( A. t  e.  F  ( u  i^i  t
)  =/=  (/)  ->  (
( u  i^i  s
)  i^i  Y )  =/=  (/) ) )
3933, 38syl 17 . . . . . . . . . 10  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  F  e.  ( Fil `  X )  /\  Y  e.  F
)  /\  x  e.  Y )  /\  u  e.  J )  /\  s  e.  F )  ->  ( A. t  e.  F  ( u  i^i  t
)  =/=  (/)  ->  (
( u  i^i  s
)  i^i  Y )  =/=  (/) ) )
4039ralrimdva 2806 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  u  e.  J )  ->  ( A. t  e.  F  ( u  i^i  t
)  =/=  (/)  ->  A. s  e.  F  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) )
4128, 40impbid2 208 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  u  e.  J )  ->  ( A. s  e.  F  ( ( u  i^i  s )  i^i  Y
)  =/=  (/)  <->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) )
4241imbi2d 318 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  u  e.  J )  ->  (
( x  e.  u  ->  A. s  e.  F  ( ( u  i^i  s )  i^i  Y
)  =/=  (/) )  <->  ( x  e.  u  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) ) )
4342ralbidva 2824 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. u  e.  J  ( x  e.  u  ->  A. s  e.  F  ( ( u  i^i  s )  i^i  Y
)  =/=  (/) )  <->  A. u  e.  J  ( x  e.  u  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) ) )
44 vex 3048 . . . . . . . . 9  |-  u  e. 
_V
4544inex1 4544 . . . . . . . 8  |-  ( u  i^i  Y )  e. 
_V
4645a1i 11 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  u  e.  J )  ->  (
u  i^i  Y )  e.  _V )
47 elrest 15326 . . . . . . . . 9  |-  ( ( J  e.  (TopOn `  X )  /\  Y  e.  F )  ->  (
y  e.  ( Jt  Y )  <->  E. u  e.  J  y  =  ( u  i^i  Y ) ) )
48473adant2 1027 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
y  e.  ( Jt  Y )  <->  E. u  e.  J  y  =  ( u  i^i  Y ) ) )
4948adantr 467 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
y  e.  ( Jt  Y )  <->  E. u  e.  J  y  =  ( u  i^i  Y ) ) )
50 eleq2 2518 . . . . . . . . 9  |-  ( y  =  ( u  i^i 
Y )  ->  (
x  e.  y  <->  x  e.  ( u  i^i  Y ) ) )
51 elin 3617 . . . . . . . . . . 11  |-  ( x  e.  ( u  i^i 
Y )  <->  ( x  e.  u  /\  x  e.  Y ) )
5251rbaib 917 . . . . . . . . . 10  |-  ( x  e.  Y  ->  (
x  e.  ( u  i^i  Y )  <->  x  e.  u ) )
5352adantl 468 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( u  i^i  Y )  <->  x  e.  u ) )
5450, 53sylan9bbr 707 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( u  i^i  Y ) )  ->  ( x  e.  y  <->  x  e.  u
) )
55 vex 3048 . . . . . . . . . . . 12  |-  s  e. 
_V
5655inex1 4544 . . . . . . . . . . 11  |-  ( s  i^i  Y )  e. 
_V
5756a1i 11 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  s  e.  F )  ->  (
s  i^i  Y )  e.  _V )
58 elrest 15326 . . . . . . . . . . . 12  |-  ( ( F  e.  ( Fil `  X )  /\  Y  e.  F )  ->  (
z  e.  ( Ft  Y )  <->  E. s  e.  F  z  =  ( s  i^i  Y ) ) )
59583adant1 1026 . . . . . . . . . . 11  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
z  e.  ( Ft  Y )  <->  E. s  e.  F  z  =  ( s  i^i  Y ) ) )
6059adantr 467 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
z  e.  ( Ft  Y )  <->  E. s  e.  F  z  =  ( s  i^i  Y ) ) )
61 ineq2 3628 . . . . . . . . . . . 12  |-  ( z  =  ( s  i^i 
Y )  ->  (
y  i^i  z )  =  ( y  i^i  ( s  i^i  Y
) ) )
6261adantl 468 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  =  ( s  i^i  Y
) )  ->  (
y  i^i  z )  =  ( y  i^i  ( s  i^i  Y
) ) )
6362neeq1d 2683 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  z  =  ( s  i^i  Y
) )  ->  (
( y  i^i  z
)  =/=  (/)  <->  ( y  i^i  ( s  i^i  Y
) )  =/=  (/) ) )
6457, 60, 63ralxfr2d 4616 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) 
<-> 
A. s  e.  F  ( y  i^i  (
s  i^i  Y )
)  =/=  (/) ) )
65 ineq1 3627 . . . . . . . . . . . 12  |-  ( y  =  ( u  i^i 
Y )  ->  (
y  i^i  ( s  i^i  Y ) )  =  ( ( u  i^i 
Y )  i^i  (
s  i^i  Y )
) )
66 inindir 3650 . . . . . . . . . . . 12  |-  ( ( u  i^i  s )  i^i  Y )  =  ( ( u  i^i 
Y )  i^i  (
s  i^i  Y )
)
6765, 66syl6eqr 2503 . . . . . . . . . . 11  |-  ( y  =  ( u  i^i 
Y )  ->  (
y  i^i  ( s  i^i  Y ) )  =  ( ( u  i^i  s )  i^i  Y
) )
6867neeq1d 2683 . . . . . . . . . 10  |-  ( y  =  ( u  i^i 
Y )  ->  (
( y  i^i  (
s  i^i  Y )
)  =/=  (/)  <->  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) )
6968ralbidv 2827 . . . . . . . . 9  |-  ( y  =  ( u  i^i 
Y )  ->  ( A. s  e.  F  ( y  i^i  (
s  i^i  Y )
)  =/=  (/)  <->  A. s  e.  F  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) )
7064, 69sylan9bb 706 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( u  i^i  Y ) )  ->  ( A. z  e.  ( Ft  Y
) ( y  i^i  z )  =/=  (/)  <->  A. s  e.  F  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) )
7154, 70imbi12d 322 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X )  /\  Y  e.  F )  /\  x  e.  Y
)  /\  y  =  ( u  i^i  Y ) )  ->  ( (
x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) )  <->  ( x  e.  u  ->  A. s  e.  F  ( (
u  i^i  s )  i^i  Y )  =/=  (/) ) ) )
7246, 49, 71ralxfr2d 4616 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. y  e.  ( Jt  Y ) ( x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) )  <->  A. u  e.  J  ( x  e.  u  ->  A. s  e.  F  ( ( u  i^i  s )  i^i  Y
)  =/=  (/) ) ) )
731adantr 467 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  J  e.  (TopOn `  X )
)
7411adantr 467 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  F  e.  ( Fil `  X
) )
753sselda 3432 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  x  e.  X )
76 fclsopn 21029 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
x  e.  ( J 
fClus  F )  <->  ( x  e.  X  /\  A. u  e.  J  ( x  e.  u  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) ) ) )
7776baibd 920 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  x  e.  X )  ->  (
x  e.  ( J 
fClus  F )  <->  A. u  e.  J  ( x  e.  u  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) ) )
7873, 74, 75, 77syl21anc 1267 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  (
x  e.  ( J 
fClus  F )  <->  A. u  e.  J  ( x  e.  u  ->  A. t  e.  F  ( u  i^i  t )  =/=  (/) ) ) )
7943, 72, 783bitr4d 289 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  /\  x  e.  Y )  ->  ( A. y  e.  ( Jt  Y ) ( x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) )  <->  x  e.  ( J  fClus  F ) ) )
8079pm5.32da 647 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( x  e.  Y  /\  A. y  e.  ( Jt  Y ) ( x  e.  y  ->  A. z  e.  ( Ft  Y ) ( y  i^i  z )  =/=  (/) ) )  <->  ( x  e.  Y  /\  x  e.  ( J  fClus  F ) ) ) )
8116, 80bitrd 257 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fClus  ( Ft  Y ) )  <->  ( x  e.  Y  /\  x  e.  ( J  fClus  F ) ) ) )
82 elin 3617 . . . 4  |-  ( x  e.  ( ( J 
fClus  F )  i^i  Y
)  <->  ( x  e.  ( J  fClus  F )  /\  x  e.  Y
) )
83 ancom 452 . . . 4  |-  ( ( x  e.  ( J 
fClus  F )  /\  x  e.  Y )  <->  ( x  e.  Y  /\  x  e.  ( J  fClus  F ) ) )
8482, 83bitri 253 . . 3  |-  ( x  e.  ( ( J 
fClus  F )  i^i  Y
)  <->  ( x  e.  Y  /\  x  e.  ( J  fClus  F ) ) )
8581, 84syl6bbr 267 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
x  e.  ( ( Jt  Y )  fClus  ( Ft  Y ) )  <->  x  e.  ( ( J  fClus  F )  i^i  Y ) ) )
8685eqrdv 2449 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
)  /\  Y  e.  F )  ->  (
( Jt  Y )  fClus  ( Ft  Y ) )  =  ( ( J  fClus  F )  i^i  Y ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738   _Vcvv 3045    \ cdif 3401    i^i cin 3403    C_ wss 3404   (/)c0 3731   ` cfv 5582  (class class class)co 6290   ↾t crest 15319   fBascfbas 18958  TopOnctopon 19918   Filcfil 20860    fClus cfcls 20951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-oadd 7186  df-er 7363  df-en 7570  df-fin 7573  df-fi 7925  df-rest 15321  df-topgen 15342  df-fbas 18967  df-fg 18968  df-top 19921  df-bases 19922  df-topon 19923  df-cld 20034  df-ntr 20035  df-cls 20036  df-fil 20861  df-fcls 20956
This theorem is referenced by:  relcmpcmet  22286
  Copyright terms: Public domain W3C validator