MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopn Structured version   Unicode version

Theorem fclsopn 20493
Description: Write the cluster point condition in terms of open sets. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsopn  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) ) )
Distinct variable groups:    o, s, A    o, F, s    o, J, s    o, X, s

Proof of Theorem fclsopn
StepHypRef Expression
1 isfcls2 20492 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
2 filn0 20341 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
32adantl 466 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  F  =/=  (/) )
4 r19.2z 3904 . . . . . 6  |-  ( ( F  =/=  (/)  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  ->  E. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)
54ex 434 . . . . 5  |-  ( F  =/=  (/)  ->  ( A. s  e.  F  A  e.  ( ( cls `  J
) `  s )  ->  E. s  e.  F  A  e.  ( ( cls `  J ) `  s ) ) )
63, 5syl 16 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A. s  e.  F  A  e.  ( ( cls `  J ) `  s )  ->  E. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
7 topontop 19405 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
87ad2antrr 725 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  J  e.  Top )
9 filelss 20331 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  s  e.  F )  ->  s  C_  X )
109adantll 713 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  s  C_  X )
11 toponuni 19406 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1211ad2antrr 725 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  X  =  U. J )
1310, 12sseqtrd 3525 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  s  C_ 
U. J )
14 eqid 2443 . . . . . . . . 9  |-  U. J  =  U. J
1514clsss3 19538 . . . . . . . 8  |-  ( ( J  e.  Top  /\  s  C_  U. J )  ->  ( ( cls `  J ) `  s
)  C_  U. J )
168, 13, 15syl2anc 661 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  (
( cls `  J
) `  s )  C_ 
U. J )
1716, 12sseqtr4d 3526 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  (
( cls `  J
) `  s )  C_  X )
1817sseld 3488 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  ( A  e.  ( ( cls `  J ) `  s )  ->  A  e.  X ) )
1918rexlimdva 2935 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( E. s  e.  F  A  e.  ( ( cls `  J ) `  s )  ->  A  e.  X ) )
206, 19syld 44 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A. s  e.  F  A  e.  ( ( cls `  J ) `  s )  ->  A  e.  X ) )
2120pm4.71rd 635 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A. s  e.  F  A  e.  ( ( cls `  J ) `  s )  <->  ( A  e.  X  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
227ad3antrrr 729 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  J  e.  Top )
2313adantlr 714 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  s  C_ 
U. J )
24 simplr 755 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  A  e.  X )
2511ad3antrrr 729 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  X  =  U. J )
2624, 25eleqtrd 2533 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  A  e.  U. J )
2714elcls 19552 . . . . . 6  |-  ( ( J  e.  Top  /\  s  C_  U. J  /\  A  e.  U. J )  ->  ( A  e.  ( ( cls `  J
) `  s )  <->  A. o  e.  J  ( A  e.  o  -> 
( o  i^i  s
)  =/=  (/) ) ) )
2822, 23, 26, 27syl3anc 1229 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  ( A  e.  ( ( cls `  J ) `  s )  <->  A. o  e.  J  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) ) ) )
2928ralbidva 2879 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. s  e.  F  A  e.  ( ( cls `  J ) `  s )  <->  A. s  e.  F  A. o  e.  J  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) ) ) )
30 ralcom 3004 . . . . 5  |-  ( A. s  e.  F  A. o  e.  J  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) )  <->  A. o  e.  J  A. s  e.  F  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) ) )
31 r19.21v 2848 . . . . . 6  |-  ( A. s  e.  F  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) )  <->  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
3231ralbii 2874 . . . . 5  |-  ( A. o  e.  J  A. s  e.  F  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
3330, 32bitri 249 . . . 4  |-  ( A. s  e.  F  A. o  e.  J  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
3429, 33syl6bb 261 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. s  e.  F  A  e.  ( ( cls `  J ) `  s )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) )
3534pm5.32da 641 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
( A  e.  X  /\  A. s  e.  F  A  e.  ( ( cls `  J ) `  s ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) ) )
361, 21, 353bitrd 279 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   A.wral 2793   E.wrex 2794    i^i cin 3460    C_ wss 3461   (/)c0 3770   U.cuni 4234   ` cfv 5578  (class class class)co 6281   Topctop 19372  TopOnctopon 19373   clsccl 19497   Filcfil 20324    fClus cfcls 20415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-iin 4318  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-fbas 18395  df-top 19377  df-topon 19380  df-cld 19498  df-ntr 19499  df-cls 19500  df-fil 20325  df-fcls 20420
This theorem is referenced by:  fclsopni  20494  fclselbas  20495  fclsnei  20498  fclsbas  20500  fclsss1  20501  fclsrest  20503  fclscf  20504  isfcf  20513
  Copyright terms: Public domain W3C validator