MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsopn Structured version   Unicode version

Theorem fclsopn 20619
Description: Write the cluster point condition in terms of open sets. (Contributed by Jeff Hankins, 10-Nov-2009.) (Revised by Mario Carneiro, 26-Aug-2015.)
Assertion
Ref Expression
fclsopn  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) ) )
Distinct variable groups:    o, s, A    o, F, s    o, J, s    o, X, s

Proof of Theorem fclsopn
StepHypRef Expression
1 isfcls2 20618 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
2 filn0 20467 . . . . . 6  |-  ( F  e.  ( Fil `  X
)  ->  F  =/=  (/) )
32adantl 464 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  F  =/=  (/) )
4 r19.2z 3847 . . . . . 6  |-  ( ( F  =/=  (/)  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)  ->  E. s  e.  F  A  e.  ( ( cls `  J
) `  s )
)
54ex 432 . . . . 5  |-  ( F  =/=  (/)  ->  ( A. s  e.  F  A  e.  ( ( cls `  J
) `  s )  ->  E. s  e.  F  A  e.  ( ( cls `  J ) `  s ) ) )
63, 5syl 16 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A. s  e.  F  A  e.  ( ( cls `  J ) `  s )  ->  E. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) )
7 topontop 19531 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
87ad2antrr 723 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  J  e.  Top )
9 filelss 20457 . . . . . . . . . 10  |-  ( ( F  e.  ( Fil `  X )  /\  s  e.  F )  ->  s  C_  X )
109adantll 711 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  s  C_  X )
11 toponuni 19532 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
1211ad2antrr 723 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  X  =  U. J )
1310, 12sseqtrd 3466 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  s  C_ 
U. J )
14 eqid 2392 . . . . . . . . 9  |-  U. J  =  U. J
1514clsss3 19664 . . . . . . . 8  |-  ( ( J  e.  Top  /\  s  C_  U. J )  ->  ( ( cls `  J ) `  s
)  C_  U. J )
168, 13, 15syl2anc 659 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  (
( cls `  J
) `  s )  C_ 
U. J )
1716, 12sseqtr4d 3467 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  (
( cls `  J
) `  s )  C_  X )
1817sseld 3429 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  s  e.  F )  ->  ( A  e.  ( ( cls `  J ) `  s )  ->  A  e.  X ) )
1918rexlimdva 2884 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( E. s  e.  F  A  e.  ( ( cls `  J ) `  s )  ->  A  e.  X ) )
206, 19syld 44 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A. s  e.  F  A  e.  ( ( cls `  J ) `  s )  ->  A  e.  X ) )
2120pm4.71rd 633 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A. s  e.  F  A  e.  ( ( cls `  J ) `  s )  <->  ( A  e.  X  /\  A. s  e.  F  A  e.  ( ( cls `  J
) `  s )
) ) )
227ad3antrrr 727 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  J  e.  Top )
2313adantlr 712 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  s  C_ 
U. J )
24 simplr 753 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  A  e.  X )
2511ad3antrrr 727 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  X  =  U. J )
2624, 25eleqtrd 2482 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  A  e.  U. J )
2714elcls 19679 . . . . . 6  |-  ( ( J  e.  Top  /\  s  C_  U. J  /\  A  e.  U. J )  ->  ( A  e.  ( ( cls `  J
) `  s )  <->  A. o  e.  J  ( A  e.  o  -> 
( o  i^i  s
)  =/=  (/) ) ) )
2822, 23, 26, 27syl3anc 1226 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  s  e.  F )  ->  ( A  e.  ( ( cls `  J ) `  s )  <->  A. o  e.  J  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) ) ) )
2928ralbidva 2828 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. s  e.  F  A  e.  ( ( cls `  J ) `  s )  <->  A. s  e.  F  A. o  e.  J  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) ) ) )
30 ralcom 2956 . . . . 5  |-  ( A. s  e.  F  A. o  e.  J  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) )  <->  A. o  e.  J  A. s  e.  F  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) ) )
31 r19.21v 2797 . . . . . 6  |-  ( A. s  e.  F  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) )  <->  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
3231ralbii 2823 . . . . 5  |-  ( A. o  e.  J  A. s  e.  F  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
3330, 32bitri 249 . . . 4  |-  ( A. s  e.  F  A. o  e.  J  ( A  e.  o  ->  ( o  i^i  s )  =/=  (/) )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
3429, 33syl6bb 261 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. s  e.  F  A  e.  ( ( cls `  J ) `  s )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) )
3534pm5.32da 639 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
( A  e.  X  /\  A. s  e.  F  A  e.  ( ( cls `  J ) `  s ) )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) ) )
361, 21, 353bitrd 279 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1836    =/= wne 2587   A.wral 2742   E.wrex 2743    i^i cin 3401    C_ wss 3402   (/)c0 3724   U.cuni 4176   ` cfv 5509  (class class class)co 6214   Topctop 19498  TopOnctopon 19499   clsccl 19623   Filcfil 20450    fClus cfcls 20541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-rep 4491  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-nel 2590  df-ral 2747  df-rex 2748  df-reu 2749  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-int 4213  df-iun 4258  df-iin 4259  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-f1 5514  df-fo 5515  df-f1o 5516  df-fv 5517  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-fbas 18548  df-top 19503  df-topon 19506  df-cld 19624  df-ntr 19625  df-cls 19626  df-fil 20451  df-fcls 20546
This theorem is referenced by:  fclsopni  20620  fclselbas  20621  fclsnei  20624  fclsbas  20626  fclsss1  20627  fclsrest  20629  fclscf  20630  isfcf  20639
  Copyright terms: Public domain W3C validator