MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsnei Structured version   Unicode version

Theorem fclsnei 19551
Description: Cluster points in terms of neighborhoods. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsnei  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/) ) ) )
Distinct variable groups:    n, s, A    n, F, s    n, J, s    X, s
Allowed substitution hint:    X( n)

Proof of Theorem fclsnei
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . . . 5  |-  U. J  =  U. J
21fclselbas 19548 . . . 4  |-  ( A  e.  ( J  fClus  F )  ->  A  e.  U. J )
3 toponuni 18491 . . . . . 6  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
43adantr 462 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  X  =  U. J )
54eleq2d 2508 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  X  <->  A  e.  U. J ) )
62, 5syl5ibr 221 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  ->  A  e.  X ) )
7 fclsneii 19549 . . . . . 6  |-  ( ( A  e.  ( J 
fClus  F )  /\  n  e.  ( ( nei `  J
) `  { A } )  /\  s  e.  F )  ->  (
n  i^i  s )  =/=  (/) )
873expb 1183 . . . . 5  |-  ( ( A  e.  ( J 
fClus  F )  /\  (
n  e.  ( ( nei `  J ) `
 { A }
)  /\  s  e.  F ) )  -> 
( n  i^i  s
)  =/=  (/) )
98ralrimivva 2806 . . . 4  |-  ( A  e.  ( J  fClus  F )  ->  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/) )
109a1i 11 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  ->  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/) ) )
116, 10jcad 530 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  ->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J ) `
 { A }
) A. s  e.  F  ( n  i^i  s )  =/=  (/) ) ) )
12 topontop 18490 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
1312ad3antrrr 724 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  ->  J  e.  Top )
14 simprl 750 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
o  e.  J )
15 simprr 751 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  ->  A  e.  o )
16 opnneip 18682 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  o  e.  J  /\  A  e.  o )  ->  o  e.  ( ( nei `  J ) `
 { A }
) )
1713, 14, 15, 16syl3anc 1213 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
o  e.  ( ( nei `  J ) `
 { A }
) )
18 ineq1 3542 . . . . . . . . . . 11  |-  ( n  =  o  ->  (
n  i^i  s )  =  ( o  i^i  s ) )
1918neeq1d 2619 . . . . . . . . . 10  |-  ( n  =  o  ->  (
( n  i^i  s
)  =/=  (/)  <->  ( o  i^i  s )  =/=  (/) ) )
2019ralbidv 2733 . . . . . . . . 9  |-  ( n  =  o  ->  ( A. s  e.  F  ( n  i^i  s
)  =/=  (/)  <->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
2120rspcv 3066 . . . . . . . 8  |-  ( o  e.  ( ( nei `  J ) `  { A } )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/)  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
2217, 21syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/)  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) )
2322expr 612 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  o  e.  J )  ->  ( A  e.  o  ->  ( A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/)  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) )
2423com23 78 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X ) )  /\  A  e.  X
)  /\  o  e.  J )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/)  ->  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) )
2524ralrimdva 2804 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  /\  A  e.  X )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/)  ->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) )
2625imdistanda 688 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/) )  -> 
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s
)  =/=  (/) ) ) ) )
27 fclsopn 19546 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  F  ( o  i^i  s )  =/=  (/) ) ) ) )
2826, 27sylibrd 234 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  (
( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/) )  ->  A  e.  ( J  fClus  F ) ) )
2911, 28impbid 191 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  F  ( n  i^i  s )  =/=  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713    i^i cin 3324   (/)c0 3634   {csn 3874   U.cuni 4088   ` cfv 5415  (class class class)co 6090   Topctop 18457  TopOnctopon 18458   neicnei 18660   Filcfil 19377    fClus cfcls 19468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-fbas 17773  df-top 18462  df-topon 18465  df-cld 18582  df-ntr 18583  df-cls 18584  df-nei 18661  df-fil 19378  df-fcls 19473
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator