MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsbas Structured version   Unicode version

Theorem fclsbas 20250
Description: Cluster points in terms of filter bases. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsbas.f  |-  F  =  ( X filGen B )
Assertion
Ref Expression
fclsbas  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) ) )
Distinct variable groups:    A, o    o, s, B    o, F    o, J    o, X
Allowed substitution hints:    A( s)    F( s)    J( s)    X( s)

Proof of Theorem fclsbas
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fclsbas.f . . . 4  |-  F  =  ( X filGen B )
2 fgcl 20107 . . . . 5  |-  ( B  e.  ( fBas `  X
)  ->  ( X filGen B )  e.  ( Fil `  X ) )
32adantl 466 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( X filGen B )  e.  ( Fil `  X
) )
41, 3syl5eqel 2552 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  F  e.  ( Fil `  X
) )
5 fclsopn 20243 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t )  =/=  (/) ) ) ) )
64, 5syldan 470 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t )  =/=  (/) ) ) ) )
7 ssfg 20101 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  X
)  ->  B  C_  ( X filGen B ) )
87ad3antlr 730 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  ->  B  C_  ( X filGen B ) )
98, 1syl6sseqr 3544 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  ->  B  C_  F )
10 ssralv 3557 . . . . . . . . 9  |-  ( B 
C_  F  ->  ( A. t  e.  F  ( o  i^i  t
)  =/=  (/)  ->  A. t  e.  B  ( o  i^i  t )  =/=  (/) ) )
119, 10syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. t  e.  F  ( o  i^i  t )  =/=  (/)  ->  A. t  e.  B  ( o  i^i  t )  =/=  (/) ) )
12 ineq2 3687 . . . . . . . . . 10  |-  ( t  =  s  ->  (
o  i^i  t )  =  ( o  i^i  s ) )
1312neeq1d 2737 . . . . . . . . 9  |-  ( t  =  s  ->  (
( o  i^i  t
)  =/=  (/)  <->  ( o  i^i  s )  =/=  (/) ) )
1413cbvralv 3081 . . . . . . . 8  |-  ( A. t  e.  B  (
o  i^i  t )  =/=  (/)  <->  A. s  e.  B  ( o  i^i  s
)  =/=  (/) )
1511, 14syl6ib 226 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. t  e.  F  ( o  i^i  t )  =/=  (/)  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) )
161eleq2i 2538 . . . . . . . . . . 11  |-  ( t  e.  F  <->  t  e.  ( X filGen B ) )
17 elfg 20100 . . . . . . . . . . . 12  |-  ( B  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen B )  <-> 
( t  C_  X  /\  E. s  e.  B  s  C_  t ) ) )
1817ad3antlr 730 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( t  e.  ( X filGen B )  <->  ( t  C_  X  /\  E. s  e.  B  s  C_  t ) ) )
1916, 18syl5bb 257 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( t  e.  F  <->  ( t  C_  X  /\  E. s  e.  B  s 
C_  t ) ) )
2019simplbda 624 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  B  e.  ( fBas `  X )
)  /\  A  e.  X )  /\  (
o  e.  J  /\  A  e.  o )
)  /\  t  e.  F )  ->  E. s  e.  B  s  C_  t )
21 r19.29r 2991 . . . . . . . . . . 11  |-  ( ( E. s  e.  B  s  C_  t  /\  A. s  e.  B  (
o  i^i  s )  =/=  (/) )  ->  E. s  e.  B  ( s  C_  t  /\  ( o  i^i  s )  =/=  (/) ) )
22 sslin 3717 . . . . . . . . . . . . 13  |-  ( s 
C_  t  ->  (
o  i^i  s )  C_  ( o  i^i  t
) )
23 ssn0 3811 . . . . . . . . . . . . 13  |-  ( ( ( o  i^i  s
)  C_  ( o  i^i  t )  /\  (
o  i^i  s )  =/=  (/) )  ->  (
o  i^i  t )  =/=  (/) )
2422, 23sylan 471 . . . . . . . . . . . 12  |-  ( ( s  C_  t  /\  ( o  i^i  s
)  =/=  (/) )  -> 
( o  i^i  t
)  =/=  (/) )
2524rexlimivw 2945 . . . . . . . . . . 11  |-  ( E. s  e.  B  ( s  C_  t  /\  ( o  i^i  s
)  =/=  (/) )  -> 
( o  i^i  t
)  =/=  (/) )
2621, 25syl 16 . . . . . . . . . 10  |-  ( ( E. s  e.  B  s  C_  t  /\  A. s  e.  B  (
o  i^i  s )  =/=  (/) )  ->  (
o  i^i  t )  =/=  (/) )
2726ex 434 . . . . . . . . 9  |-  ( E. s  e.  B  s 
C_  t  ->  ( A. s  e.  B  ( o  i^i  s
)  =/=  (/)  ->  (
o  i^i  t )  =/=  (/) ) )
2820, 27syl 16 . . . . . . . 8  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  B  e.  ( fBas `  X )
)  /\  A  e.  X )  /\  (
o  e.  J  /\  A  e.  o )
)  /\  t  e.  F )  ->  ( A. s  e.  B  ( o  i^i  s
)  =/=  (/)  ->  (
o  i^i  t )  =/=  (/) ) )
2928ralrimdva 2875 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. s  e.  B  ( o  i^i  s )  =/=  (/)  ->  A. t  e.  F  ( o  i^i  t )  =/=  (/) ) )
3015, 29impbid 191 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. t  e.  F  ( o  i^i  t )  =/=  (/)  <->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) )
3130anassrs 648 . . . . 5  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  B  e.  ( fBas `  X )
)  /\  A  e.  X )  /\  o  e.  J )  /\  A  e.  o )  ->  ( A. t  e.  F  ( o  i^i  t
)  =/=  (/)  <->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) )
3231pm5.74da 687 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  o  e.  J )  ->  (
( A  e.  o  ->  A. t  e.  F  ( o  i^i  t
)  =/=  (/) )  <->  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) )
3332ralbidva 2893 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t
)  =/=  (/) )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) )
3433pm5.32da 641 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t
)  =/=  (/) ) )  <-> 
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s
)  =/=  (/) ) ) ) )
356, 34bitrd 253 1  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808    i^i cin 3468    C_ wss 3469   (/)c0 3778   ` cfv 5579  (class class class)co 6275   fBascfbas 18170   filGencfg 18171  TopOnctopon 19155   Filcfil 20074    fClus cfcls 20165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-iin 4321  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-fbas 18180  df-fg 18181  df-top 19159  df-topon 19162  df-cld 19279  df-ntr 19280  df-cls 19281  df-fil 20075  df-fcls 20170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator