MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsbas Structured version   Unicode version

Theorem fclsbas 20816
Description: Cluster points in terms of filter bases. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsbas.f  |-  F  =  ( X filGen B )
Assertion
Ref Expression
fclsbas  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) ) )
Distinct variable groups:    A, o    o, s, B    o, F    o, J    o, X
Allowed substitution hints:    A( s)    F( s)    J( s)    X( s)

Proof of Theorem fclsbas
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fclsbas.f . . . 4  |-  F  =  ( X filGen B )
2 fgcl 20673 . . . . 5  |-  ( B  e.  ( fBas `  X
)  ->  ( X filGen B )  e.  ( Fil `  X ) )
32adantl 466 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( X filGen B )  e.  ( Fil `  X
) )
41, 3syl5eqel 2496 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  F  e.  ( Fil `  X
) )
5 fclsopn 20809 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  e.  ( Fil `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t )  =/=  (/) ) ) ) )
64, 5syldan 470 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t )  =/=  (/) ) ) ) )
7 ssfg 20667 . . . . . . . . . . 11  |-  ( B  e.  ( fBas `  X
)  ->  B  C_  ( X filGen B ) )
87ad3antlr 731 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  ->  B  C_  ( X filGen B ) )
98, 1syl6sseqr 3491 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  ->  B  C_  F )
10 ssralv 3505 . . . . . . . . 9  |-  ( B 
C_  F  ->  ( A. t  e.  F  ( o  i^i  t
)  =/=  (/)  ->  A. t  e.  B  ( o  i^i  t )  =/=  (/) ) )
119, 10syl 17 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. t  e.  F  ( o  i^i  t )  =/=  (/)  ->  A. t  e.  B  ( o  i^i  t )  =/=  (/) ) )
12 ineq2 3637 . . . . . . . . . 10  |-  ( t  =  s  ->  (
o  i^i  t )  =  ( o  i^i  s ) )
1312neeq1d 2682 . . . . . . . . 9  |-  ( t  =  s  ->  (
( o  i^i  t
)  =/=  (/)  <->  ( o  i^i  s )  =/=  (/) ) )
1413cbvralv 3036 . . . . . . . 8  |-  ( A. t  e.  B  (
o  i^i  t )  =/=  (/)  <->  A. s  e.  B  ( o  i^i  s
)  =/=  (/) )
1511, 14syl6ib 228 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. t  e.  F  ( o  i^i  t )  =/=  (/)  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) )
161eleq2i 2482 . . . . . . . . . . 11  |-  ( t  e.  F  <->  t  e.  ( X filGen B ) )
17 elfg 20666 . . . . . . . . . . . 12  |-  ( B  e.  ( fBas `  X
)  ->  ( t  e.  ( X filGen B )  <-> 
( t  C_  X  /\  E. s  e.  B  s  C_  t ) ) )
1817ad3antlr 731 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( t  e.  ( X filGen B )  <->  ( t  C_  X  /\  E. s  e.  B  s  C_  t ) ) )
1916, 18syl5bb 259 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( t  e.  F  <->  ( t  C_  X  /\  E. s  e.  B  s 
C_  t ) ) )
2019simplbda 624 . . . . . . . . 9  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  B  e.  ( fBas `  X )
)  /\  A  e.  X )  /\  (
o  e.  J  /\  A  e.  o )
)  /\  t  e.  F )  ->  E. s  e.  B  s  C_  t )
21 r19.29r 2945 . . . . . . . . . . 11  |-  ( ( E. s  e.  B  s  C_  t  /\  A. s  e.  B  (
o  i^i  s )  =/=  (/) )  ->  E. s  e.  B  ( s  C_  t  /\  ( o  i^i  s )  =/=  (/) ) )
22 sslin 3667 . . . . . . . . . . . . 13  |-  ( s 
C_  t  ->  (
o  i^i  s )  C_  ( o  i^i  t
) )
23 ssn0 3774 . . . . . . . . . . . . 13  |-  ( ( ( o  i^i  s
)  C_  ( o  i^i  t )  /\  (
o  i^i  s )  =/=  (/) )  ->  (
o  i^i  t )  =/=  (/) )
2422, 23sylan 471 . . . . . . . . . . . 12  |-  ( ( s  C_  t  /\  ( o  i^i  s
)  =/=  (/) )  -> 
( o  i^i  t
)  =/=  (/) )
2524rexlimivw 2895 . . . . . . . . . . 11  |-  ( E. s  e.  B  ( s  C_  t  /\  ( o  i^i  s
)  =/=  (/) )  -> 
( o  i^i  t
)  =/=  (/) )
2621, 25syl 17 . . . . . . . . . 10  |-  ( ( E. s  e.  B  s  C_  t  /\  A. s  e.  B  (
o  i^i  s )  =/=  (/) )  ->  (
o  i^i  t )  =/=  (/) )
2726ex 434 . . . . . . . . 9  |-  ( E. s  e.  B  s 
C_  t  ->  ( A. s  e.  B  ( o  i^i  s
)  =/=  (/)  ->  (
o  i^i  t )  =/=  (/) ) )
2820, 27syl 17 . . . . . . . 8  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  B  e.  ( fBas `  X )
)  /\  A  e.  X )  /\  (
o  e.  J  /\  A  e.  o )
)  /\  t  e.  F )  ->  ( A. s  e.  B  ( o  i^i  s
)  =/=  (/)  ->  (
o  i^i  t )  =/=  (/) ) )
2928ralrimdva 2824 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. s  e.  B  ( o  i^i  s )  =/=  (/)  ->  A. t  e.  F  ( o  i^i  t )  =/=  (/) ) )
3015, 29impbid 192 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. t  e.  F  ( o  i^i  t )  =/=  (/)  <->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) )
3130anassrs 648 . . . . 5  |-  ( ( ( ( ( J  e.  (TopOn `  X
)  /\  B  e.  ( fBas `  X )
)  /\  A  e.  X )  /\  o  e.  J )  /\  A  e.  o )  ->  ( A. t  e.  F  ( o  i^i  t
)  =/=  (/)  <->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) )
3231pm5.74da 687 . . . 4  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  o  e.  J )  ->  (
( A  e.  o  ->  A. t  e.  F  ( o  i^i  t
)  =/=  (/) )  <->  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) )
3332ralbidva 2842 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t
)  =/=  (/) )  <->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) )
3433pm5.32da 641 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. t  e.  F  ( o  i^i  t
)  =/=  (/) ) )  <-> 
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s
)  =/=  (/) ) ) ) )
356, 34bitrd 255 1  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fClus  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  B  ( o  i^i  s )  =/=  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 186    /\ wa 369    = wceq 1407    e. wcel 1844    =/= wne 2600   A.wral 2756   E.wrex 2757    i^i cin 3415    C_ wss 3416   (/)c0 3740   ` cfv 5571  (class class class)co 6280   fBascfbas 18728   filGencfg 18729  TopOnctopon 19689   Filcfil 20640    fClus cfcls 20731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1641  ax-4 1654  ax-5 1727  ax-6 1773  ax-7 1816  ax-8 1846  ax-9 1848  ax-10 1863  ax-11 1868  ax-12 1880  ax-13 2028  ax-ext 2382  ax-rep 4509  ax-sep 4519  ax-nul 4527  ax-pow 4574  ax-pr 4632  ax-un 6576
This theorem depends on definitions:  df-bi 187  df-or 370  df-an 371  df-3an 978  df-tru 1410  df-ex 1636  df-nf 1640  df-sb 1766  df-eu 2244  df-mo 2245  df-clab 2390  df-cleq 2396  df-clel 2399  df-nfc 2554  df-ne 2602  df-nel 2603  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3063  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3741  df-if 3888  df-pw 3959  df-sn 3975  df-pr 3977  df-op 3981  df-uni 4194  df-int 4230  df-iun 4275  df-iin 4276  df-br 4398  df-opab 4456  df-mpt 4457  df-id 4740  df-xp 4831  df-rel 4832  df-cnv 4833  df-co 4834  df-dm 4835  df-rn 4836  df-res 4837  df-ima 4838  df-iota 5535  df-fun 5573  df-fn 5574  df-f 5575  df-f1 5576  df-fo 5577  df-f1o 5578  df-fv 5579  df-ov 6283  df-oprab 6284  df-mpt2 6285  df-fbas 18738  df-fg 18739  df-top 19693  df-topon 19696  df-cld 19814  df-ntr 19815  df-cls 19816  df-fil 20641  df-fcls 20736
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator