MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfnei Structured version   Unicode version

Theorem fcfnei 19608
Description: The property of being a cluster point of a function in terms of neighborhoods. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfnei  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) ) )
Distinct variable groups:    A, n    n, s, J    n, L, s    n, F, s    n, X, s    n, Y, s
Allowed substitution hint:    A( s)

Proof of Theorem fcfnei
Dummy variable  o is distinct from all other variables.
StepHypRef Expression
1 isfcf 19607 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) ) )
2 simpll1 1027 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  J  e.  (TopOn `  X
) )
3 topontop 18531 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
42, 3syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  J  e.  Top )
5 simpr 461 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  n  e.  ( ( nei `  J ) `  { A } ) )
6 eqid 2443 . . . . . . . . 9  |-  U. J  =  U. J
76neii1 18710 . . . . . . . 8  |-  ( ( J  e.  Top  /\  n  e.  ( ( nei `  J ) `  { A } ) )  ->  n  C_  U. J
)
84, 5, 7syl2anc 661 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  n  C_  U. J )
96ntrss2 18661 . . . . . . 7  |-  ( ( J  e.  Top  /\  n  C_  U. J )  ->  ( ( int `  J ) `  n
)  C_  n )
104, 8, 9syl2anc 661 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( int `  J
) `  n )  C_  n )
11 simplr 754 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  X )
12 toponuni 18532 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
132, 12syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  X  =  U. J )
1411, 13eleqtrd 2519 . . . . . . . . . . 11  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  U. J )
1514snssd 4018 . . . . . . . . . 10  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  { A }  C_  U. J
)
166neiint 18708 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  { A }  C_  U. J  /\  n  C_  U. J
)  ->  ( n  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  n
) ) )
174, 15, 8, 16syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( n  e.  ( ( nei `  J
) `  { A } )  <->  { A }  C_  ( ( int `  J ) `  n
) ) )
185, 17mpbid 210 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  { A }  C_  (
( int `  J
) `  n )
)
19 snssg 4007 . . . . . . . . 9  |-  ( A  e.  X  ->  ( A  e.  ( ( int `  J ) `  n )  <->  { A }  C_  ( ( int `  J ) `  n
) ) )
2011, 19syl 16 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A  e.  ( ( int `  J
) `  n )  <->  { A }  C_  (
( int `  J
) `  n )
) )
2118, 20mpbird 232 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  ->  A  e.  ( ( int `  J ) `  n ) )
226ntropn 18653 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  n  C_  U. J )  ->  ( ( int `  J ) `  n
)  e.  J )
234, 8, 22syl2anc 661 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( ( int `  J
) `  n )  e.  J )
24 eleq2 2504 . . . . . . . . . 10  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( A  e.  o  <->  A  e.  (
( int `  J
) `  n )
) )
25 ineq1 3545 . . . . . . . . . . . 12  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( o  i^i  ( F " s
) )  =  ( ( ( int `  J
) `  n )  i^i  ( F " s
) ) )
2625neeq1d 2621 . . . . . . . . . . 11  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( (
o  i^i  ( F " s ) )  =/=  (/) 
<->  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) )
2726ralbidv 2735 . . . . . . . . . 10  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( A. s  e.  L  (
o  i^i  ( F " s ) )  =/=  (/) 
<-> 
A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) )
2824, 27imbi12d 320 . . . . . . . . 9  |-  ( o  =  ( ( int `  J ) `  n
)  ->  ( ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F
" s ) )  =/=  (/) )  <->  ( A  e.  ( ( int `  J
) `  n )  ->  A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) ) )
2928rspcv 3069 . . . . . . . 8  |-  ( ( ( int `  J
) `  n )  e.  J  ->  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F
" s ) )  =/=  (/) )  ->  ( A  e.  ( ( int `  J ) `  n )  ->  A. s  e.  L  ( (
( int `  J
) `  n )  i^i  ( F " s
) )  =/=  (/) ) ) )
3023, 29syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) )  -> 
( A  e.  ( ( int `  J
) `  n )  ->  A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) ) )
3121, 30mpid 41 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) )  ->  A. s  e.  L  ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  =/=  (/) ) )
32 ssrin 3575 . . . . . . . 8  |-  ( ( ( int `  J
) `  n )  C_  n  ->  ( (
( int `  J
) `  n )  i^i  ( F " s
) )  C_  (
n  i^i  ( F " s ) ) )
33 ssn0 3670 . . . . . . . . 9  |-  ( ( ( ( ( int `  J ) `  n
)  i^i  ( F " s ) )  C_  ( n  i^i  ( F " s ) )  /\  ( ( ( int `  J ) `
 n )  i^i  ( F " s
) )  =/=  (/) )  -> 
( n  i^i  ( F " s ) )  =/=  (/) )
3433ex 434 . . . . . . . 8  |-  ( ( ( ( int `  J
) `  n )  i^i  ( F " s
) )  C_  (
n  i^i  ( F " s ) )  -> 
( ( ( ( int `  J ) `
 n )  i^i  ( F " s
) )  =/=  (/)  ->  (
n  i^i  ( F " s ) )  =/=  (/) ) )
3532, 34syl 16 . . . . . . 7  |-  ( ( ( int `  J
) `  n )  C_  n  ->  ( (
( ( int `  J
) `  n )  i^i  ( F " s
) )  =/=  (/)  ->  (
n  i^i  ( F " s ) )  =/=  (/) ) )
3635ralimdv 2795 . . . . . 6  |-  ( ( ( int `  J
) `  n )  C_  n  ->  ( A. s  e.  L  (
( ( int `  J
) `  n )  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) )
3710, 31, 36sylsyld 56 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  n  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) )  ->  A. s  e.  L  ( n  i^i  ( F " s ) )  =/=  (/) ) )
3837ralrimdva 2806 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) )  ->  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) )
39 simpl1 991 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  J  e.  (TopOn `  X )
)
4039, 3syl 16 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  J  e.  Top )
41 opnneip 18723 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  o  e.  J  /\  A  e.  o )  ->  o  e.  ( ( nei `  J ) `
 { A }
) )
42413expb 1188 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  ( o  e.  J  /\  A  e.  o
) )  ->  o  e.  ( ( nei `  J
) `  { A } ) )
4340, 42sylan 471 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
o  e.  ( ( nei `  J ) `
 { A }
) )
44 ineq1 3545 . . . . . . . . . . 11  |-  ( n  =  o  ->  (
n  i^i  ( F " s ) )  =  ( o  i^i  ( F " s ) ) )
4544neeq1d 2621 . . . . . . . . . 10  |-  ( n  =  o  ->  (
( n  i^i  ( F " s ) )  =/=  (/)  <->  ( o  i^i  ( F " s
) )  =/=  (/) ) )
4645ralbidv 2735 . . . . . . . . 9  |-  ( n  =  o  ->  ( A. s  e.  L  ( n  i^i  ( F " s ) )  =/=  (/)  <->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) ) )
4746rspcv 3069 . . . . . . . 8  |-  ( o  e.  ( ( nei `  J ) `  { A } )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) )
4843, 47syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  ( o  e.  J  /\  A  e.  o ) )  -> 
( A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) )
4948expr 615 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  o  e.  J )  ->  ( A  e.  o  ->  ( A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
5049com23 78 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  X
)  /\  o  e.  J )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F
" s ) )  =/=  (/) ) ) )
5150ralrimdva 2806 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/)  ->  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s
) )  =/=  (/) ) ) )
5238, 51impbid 191 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  X )  ->  ( A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) )  <->  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) )
5352pm5.32da 641 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( A  e.  X  /\  A. o  e.  J  ( A  e.  o  ->  A. s  e.  L  ( o  i^i  ( F " s ) )  =/=  (/) ) )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) ) )
541, 53bitrd 253 1  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) A. s  e.  L  ( n  i^i  ( F " s
) )  =/=  (/) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715    i^i cin 3327    C_ wss 3328   (/)c0 3637   {csn 3877   U.cuni 4091   "cima 4843   -->wf 5414   ` cfv 5418  (class class class)co 6091   Topctop 18498  TopOnctopon 18499   intcnt 18621   neicnei 18701   Filcfil 19418    fClusf cfcf 19510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-map 7216  df-fbas 17814  df-fg 17815  df-top 18503  df-topon 18506  df-cld 18623  df-ntr 18624  df-cls 18625  df-nei 18702  df-fil 19419  df-fm 19511  df-fcls 19514  df-fcf 19515
This theorem is referenced by:  fcfneii  19610
  Copyright terms: Public domain W3C validator