MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcfelbas Structured version   Unicode version

Theorem fcfelbas 19744
Description: A cluster point of a function is in the base set of the topology. (Contributed by Jeff Hankins, 26-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
fcfelbas  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  ( ( J  fClusf  L ) `  F ) )  ->  A  e.  X )

Proof of Theorem fcfelbas
StepHypRef Expression
1 fcfval 19741 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  (
( J  fClusf  L ) `
 F )  =  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) )
21eleq2d 2524 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  <->  A  e.  ( J  fClus  ( ( X  FilMap  F ) `  L ) ) ) )
3 eqid 2454 . . . . 5  |-  U. J  =  U. J
43fclselbas 19724 . . . 4  |-  ( A  e.  ( J  fClus  ( ( X  FilMap  F ) `
 L ) )  ->  A  e.  U. J )
52, 4syl6bi 228 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fClusf  L ) `  F )  ->  A  e.  U. J ) )
65imp 429 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  ( ( J  fClusf  L ) `  F ) )  ->  A  e.  U. J )
7 simpl1 991 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  ( ( J  fClusf  L ) `  F ) )  ->  J  e.  (TopOn `  X ) )
8 toponuni 18667 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
97, 8syl 16 . 2  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  ( ( J  fClusf  L ) `  F ) )  ->  X  =  U. J )
106, 9eleqtrrd 2545 1  |-  ( ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  /\  A  e.  ( ( J  fClusf  L ) `  F ) )  ->  A  e.  X )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   U.cuni 4202   -->wf 5525   ` cfv 5529  (class class class)co 6203  TopOnctopon 18634   Filcfil 19553    FilMap cfm 19641    fClus cfcls 19644    fClusf cfcf 19645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-iin 4285  df-br 4404  df-opab 4462  df-mpt 4463  df-id 4747  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-map 7329  df-fbas 17942  df-top 18638  df-topon 18641  df-cld 18758  df-ntr 18759  df-cls 18760  df-fil 19554  df-fcls 19649  df-fcf 19650
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator