MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbunfip Structured version   Unicode version

Theorem fbunfip 20133
Description: A helpful lemma for showing that certain sets generate filters. (Contributed by Jeff Hankins, 3-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbunfip  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( -.  (/)  e.  ( fi
`  ( F  u.  G ) )  <->  A. x  e.  F  A. y  e.  G  ( x  i^i  y )  =/=  (/) ) )
Distinct variable groups:    x, y, G    x, F, y    x, X, y    x, Y, y

Proof of Theorem fbunfip
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfiun 7890 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( (/) 
e.  ( fi `  ( F  u.  G
) )  <->  ( (/)  e.  ( fi `  F )  \/  (/)  e.  ( fi
`  G )  \/ 
E. x  e.  ( fi `  F ) E. y  e.  ( fi `  G )
(/)  =  ( x  i^i  y ) ) ) )
21notbid 294 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( -.  (/)  e.  ( fi
`  ( F  u.  G ) )  <->  -.  ( (/) 
e.  ( fi `  F )  \/  (/)  e.  ( fi `  G )  \/  E. x  e.  ( fi `  F
) E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) ) ) )
3 3ioran 991 . . . 4  |-  ( -.  ( (/)  e.  ( fi `  F )  \/  (/)  e.  ( fi `  G )  \/  E. x  e.  ( fi `  F ) E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) )  <-> 
( -.  (/)  e.  ( fi `  F )  /\  -.  (/)  e.  ( fi `  G )  /\  -.  E. x  e.  ( fi `  F
) E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) ) )
4 df-3an 975 . . . 4  |-  ( ( -.  (/)  e.  ( fi
`  F )  /\  -.  (/)  e.  ( fi
`  G )  /\  -.  E. x  e.  ( fi `  F ) E. y  e.  ( fi `  G )
(/)  =  ( x  i^i  y ) )  <-> 
( ( -.  (/)  e.  ( fi `  F )  /\  -.  (/)  e.  ( fi `  G ) )  /\  -.  E. x  e.  ( fi `  F ) E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) ) )
53, 4bitr2i 250 . . 3  |-  ( ( ( -.  (/)  e.  ( fi `  F )  /\  -.  (/)  e.  ( fi `  G ) )  /\  -.  E. x  e.  ( fi `  F ) E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) )  <->  -.  ( (/)  e.  ( fi `  F )  \/  (/)  e.  ( fi `  G )  \/  E. x  e.  ( fi `  F ) E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) ) )
62, 5syl6bbr 263 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( -.  (/)  e.  ( fi
`  ( F  u.  G ) )  <->  ( ( -.  (/)  e.  ( fi
`  F )  /\  -.  (/)  e.  ( fi
`  G ) )  /\  -.  E. x  e.  ( fi `  F
) E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) ) ) )
7 nesym 2739 . . . . . . 7  |-  ( ( x  i^i  y )  =/=  (/)  <->  -.  (/)  =  ( x  i^i  y ) )
87ralbii 2895 . . . . . 6  |-  ( A. y  e.  ( fi `  G ) ( x  i^i  y )  =/=  (/) 
<-> 
A. y  e.  ( fi `  G )  -.  (/)  =  ( x  i^i  y ) )
9 ralnex 2910 . . . . . 6  |-  ( A. y  e.  ( fi `  G )  -.  (/)  =  ( x  i^i  y )  <->  -.  E. y  e.  ( fi `  G )
(/)  =  ( x  i^i  y ) )
108, 9bitri 249 . . . . 5  |-  ( A. y  e.  ( fi `  G ) ( x  i^i  y )  =/=  (/) 
<->  -.  E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) )
1110ralbii 2895 . . . 4  |-  ( A. x  e.  ( fi `  F ) A. y  e.  ( fi `  G
) ( x  i^i  y )  =/=  (/)  <->  A. x  e.  ( fi `  F
)  -.  E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) )
12 ralnex 2910 . . . 4  |-  ( A. x  e.  ( fi `  F )  -.  E. y  e.  ( fi `  G ) (/)  =  ( x  i^i  y )  <->  -.  E. x  e.  ( fi `  F ) E. y  e.  ( fi `  G )
(/)  =  ( x  i^i  y ) )
1311, 12bitri 249 . . 3  |-  ( A. x  e.  ( fi `  F ) A. y  e.  ( fi `  G
) ( x  i^i  y )  =/=  (/)  <->  -.  E. x  e.  ( fi `  F
) E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) )
14 fbasfip 20132 . . . . 5  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  ( fi `  F ) )
15 fbasfip 20132 . . . . 5  |-  ( G  e.  ( fBas `  Y
)  ->  -.  (/)  e.  ( fi `  G ) )
1614, 15anim12i 566 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( -.  (/)  e.  ( fi
`  F )  /\  -.  (/)  e.  ( fi
`  G ) ) )
1716biantrurd 508 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( -.  E. x  e.  ( fi `  F ) E. y  e.  ( fi `  G )
(/)  =  ( x  i^i  y )  <->  ( ( -.  (/)  e.  ( fi
`  F )  /\  -.  (/)  e.  ( fi
`  G ) )  /\  -.  E. x  e.  ( fi `  F
) E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) ) ) )
1813, 17syl5rbb 258 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  (
( ( -.  (/)  e.  ( fi `  F )  /\  -.  (/)  e.  ( fi `  G ) )  /\  -.  E. x  e.  ( fi `  F ) E. y  e.  ( fi `  G
) (/)  =  ( x  i^i  y ) )  <->  A. x  e.  ( fi `  F ) A. y  e.  ( fi `  G ) ( x  i^i  y )  =/=  (/) ) )
19 ssfii 7879 . . . . 5  |-  ( F  e.  ( fBas `  X
)  ->  F  C_  ( fi `  F ) )
20 ssralv 3564 . . . . 5  |-  ( F 
C_  ( fi `  F )  ->  ( A. x  e.  ( fi `  F ) A. y  e.  ( fi `  G ) ( x  i^i  y )  =/=  (/)  ->  A. x  e.  F  A. y  e.  ( fi `  G ) ( x  i^i  y )  =/=  (/) ) )
2119, 20syl 16 . . . 4  |-  ( F  e.  ( fBas `  X
)  ->  ( A. x  e.  ( fi `  F ) A. y  e.  ( fi `  G
) ( x  i^i  y )  =/=  (/)  ->  A. x  e.  F  A. y  e.  ( fi `  G
) ( x  i^i  y )  =/=  (/) ) )
22 ssfii 7879 . . . . . 6  |-  ( G  e.  ( fBas `  Y
)  ->  G  C_  ( fi `  G ) )
23 ssralv 3564 . . . . . 6  |-  ( G 
C_  ( fi `  G )  ->  ( A. y  e.  ( fi `  G ) ( x  i^i  y )  =/=  (/)  ->  A. y  e.  G  ( x  i^i  y )  =/=  (/) ) )
2422, 23syl 16 . . . . 5  |-  ( G  e.  ( fBas `  Y
)  ->  ( A. y  e.  ( fi `  G ) ( x  i^i  y )  =/=  (/)  ->  A. y  e.  G  ( x  i^i  y
)  =/=  (/) ) )
2524ralimdv 2874 . . . 4  |-  ( G  e.  ( fBas `  Y
)  ->  ( A. x  e.  F  A. y  e.  ( fi `  G ) ( x  i^i  y )  =/=  (/)  ->  A. x  e.  F  A. y  e.  G  ( x  i^i  y
)  =/=  (/) ) )
2621, 25sylan9 657 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( A. x  e.  ( fi `  F ) A. y  e.  ( fi `  G ) ( x  i^i  y )  =/=  (/)  ->  A. x  e.  F  A. y  e.  G  ( x  i^i  y
)  =/=  (/) ) )
27 ineq1 3693 . . . . . 6  |-  ( x  =  z  ->  (
x  i^i  y )  =  ( z  i^i  y ) )
2827neeq1d 2744 . . . . 5  |-  ( x  =  z  ->  (
( x  i^i  y
)  =/=  (/)  <->  ( z  i^i  y )  =/=  (/) ) )
29 ineq2 3694 . . . . . 6  |-  ( y  =  w  ->  (
z  i^i  y )  =  ( z  i^i  w ) )
3029neeq1d 2744 . . . . 5  |-  ( y  =  w  ->  (
( z  i^i  y
)  =/=  (/)  <->  ( z  i^i  w )  =/=  (/) ) )
3128, 30cbvral2v 3096 . . . 4  |-  ( A. x  e.  F  A. y  e.  G  (
x  i^i  y )  =/=  (/)  <->  A. z  e.  F  A. w  e.  G  ( z  i^i  w
)  =/=  (/) )
32 fbssfi 20101 . . . . . . 7  |-  ( ( F  e.  ( fBas `  X )  /\  x  e.  ( fi `  F
) )  ->  E. z  e.  F  z  C_  x )
33 fbssfi 20101 . . . . . . 7  |-  ( ( G  e.  ( fBas `  Y )  /\  y  e.  ( fi `  G
) )  ->  E. w  e.  G  w  C_  y
)
34 r19.29 2997 . . . . . . . . . 10  |-  ( ( A. z  e.  F  A. w  e.  G  ( z  i^i  w
)  =/=  (/)  /\  E. z  e.  F  z  C_  x )  ->  E. z  e.  F  ( A. w  e.  G  (
z  i^i  w )  =/=  (/)  /\  z  C_  x ) )
35 r19.29 2997 . . . . . . . . . . . . 13  |-  ( ( A. w  e.  G  ( z  i^i  w
)  =/=  (/)  /\  E. w  e.  G  w  C_  y )  ->  E. w  e.  G  ( (
z  i^i  w )  =/=  (/)  /\  w  C_  y ) )
36 ss2in 3725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  C_  x  /\  w  C_  y )  -> 
( z  i^i  w
)  C_  ( x  i^i  y ) )
37 sseq2 3526 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  i^i  y )  =  (/)  ->  ( ( z  i^i  w ) 
C_  ( x  i^i  y )  <->  ( z  i^i  w )  C_  (/) ) )
38 ss0 3816 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( z  i^i  w ) 
C_  (/)  ->  ( z  i^i  w )  =  (/) )
3937, 38syl6bi 228 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  i^i  y )  =  (/)  ->  ( ( z  i^i  w ) 
C_  ( x  i^i  y )  ->  (
z  i^i  w )  =  (/) ) )
4036, 39syl5com 30 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  C_  x  /\  w  C_  y )  -> 
( ( x  i^i  y )  =  (/)  ->  ( z  i^i  w
)  =  (/) ) )
4140necon3d 2691 . . . . . . . . . . . . . . . . 17  |-  ( ( z  C_  x  /\  w  C_  y )  -> 
( ( z  i^i  w )  =/=  (/)  ->  (
x  i^i  y )  =/=  (/) ) )
4241ex 434 . . . . . . . . . . . . . . . 16  |-  ( z 
C_  x  ->  (
w  C_  y  ->  ( ( z  i^i  w
)  =/=  (/)  ->  (
x  i^i  y )  =/=  (/) ) ) )
4342com13 80 . . . . . . . . . . . . . . 15  |-  ( ( z  i^i  w )  =/=  (/)  ->  ( w  C_  y  ->  ( z  C_  x  ->  ( x  i^i  y )  =/=  (/) ) ) )
4443imp 429 . . . . . . . . . . . . . 14  |-  ( ( ( z  i^i  w
)  =/=  (/)  /\  w  C_  y )  ->  (
z  C_  x  ->  ( x  i^i  y )  =/=  (/) ) )
4544rexlimivw 2952 . . . . . . . . . . . . 13  |-  ( E. w  e.  G  ( ( z  i^i  w
)  =/=  (/)  /\  w  C_  y )  ->  (
z  C_  x  ->  ( x  i^i  y )  =/=  (/) ) )
4635, 45syl 16 . . . . . . . . . . . 12  |-  ( ( A. w  e.  G  ( z  i^i  w
)  =/=  (/)  /\  E. w  e.  G  w  C_  y )  ->  (
z  C_  x  ->  ( x  i^i  y )  =/=  (/) ) )
4746impancom 440 . . . . . . . . . . 11  |-  ( ( A. w  e.  G  ( z  i^i  w
)  =/=  (/)  /\  z  C_  x )  ->  ( E. w  e.  G  w  C_  y  ->  (
x  i^i  y )  =/=  (/) ) )
4847rexlimivw 2952 . . . . . . . . . 10  |-  ( E. z  e.  F  ( A. w  e.  G  ( z  i^i  w
)  =/=  (/)  /\  z  C_  x )  ->  ( E. w  e.  G  w  C_  y  ->  (
x  i^i  y )  =/=  (/) ) )
4934, 48syl 16 . . . . . . . . 9  |-  ( ( A. z  e.  F  A. w  e.  G  ( z  i^i  w
)  =/=  (/)  /\  E. z  e.  F  z  C_  x )  ->  ( E. w  e.  G  w  C_  y  ->  (
x  i^i  y )  =/=  (/) ) )
5049expimpd 603 . . . . . . . 8  |-  ( A. z  e.  F  A. w  e.  G  (
z  i^i  w )  =/=  (/)  ->  ( ( E. z  e.  F  z  C_  x  /\  E. w  e.  G  w  C_  y )  ->  (
x  i^i  y )  =/=  (/) ) )
5150com12 31 . . . . . . 7  |-  ( ( E. z  e.  F  z  C_  x  /\  E. w  e.  G  w  C_  y )  ->  ( A. z  e.  F  A. w  e.  G  ( z  i^i  w
)  =/=  (/)  ->  (
x  i^i  y )  =/=  (/) ) )
5232, 33, 51syl2an 477 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  X )  /\  x  e.  ( fi `  F ) )  /\  ( G  e.  ( fBas `  Y
)  /\  y  e.  ( fi `  G ) ) )  ->  ( A. z  e.  F  A. w  e.  G  ( z  i^i  w
)  =/=  (/)  ->  (
x  i^i  y )  =/=  (/) ) )
5352an4s 824 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  G  e.  ( fBas `  Y ) )  /\  ( x  e.  ( fi `  F
)  /\  y  e.  ( fi `  G ) ) )  ->  ( A. z  e.  F  A. w  e.  G  ( z  i^i  w
)  =/=  (/)  ->  (
x  i^i  y )  =/=  (/) ) )
5453ralrimdvva 2888 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( A. z  e.  F  A. w  e.  G  ( z  i^i  w
)  =/=  (/)  ->  A. x  e.  ( fi `  F
) A. y  e.  ( fi `  G
) ( x  i^i  y )  =/=  (/) ) )
5531, 54syl5bi 217 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( A. x  e.  F  A. y  e.  G  ( x  i^i  y
)  =/=  (/)  ->  A. x  e.  ( fi `  F
) A. y  e.  ( fi `  G
) ( x  i^i  y )  =/=  (/) ) )
5626, 55impbid 191 . 2  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( A. x  e.  ( fi `  F ) A. y  e.  ( fi `  G ) ( x  i^i  y )  =/=  (/) 
<-> 
A. x  e.  F  A. y  e.  G  ( x  i^i  y
)  =/=  (/) ) )
576, 18, 563bitrd 279 1  |-  ( ( F  e.  ( fBas `  X )  /\  G  e.  ( fBas `  Y
) )  ->  ( -.  (/)  e.  ( fi
`  ( F  u.  G ) )  <->  A. x  e.  F  A. y  e.  G  ( x  i^i  y )  =/=  (/) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    \/ w3o 972    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    u. cun 3474    i^i cin 3475    C_ wss 3476   (/)c0 3785   ` cfv 5588   ficfi 7870   fBascfbas 18205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-en 7517  df-fin 7520  df-fi 7871  df-fbas 18215
This theorem is referenced by:  isufil2  20172  ufileu  20183  filufint  20184  fmfnfm  20222  hausflim  20245  flimclslem  20248  fclsfnflim  20291  flimfnfcls  20292
  Copyright terms: Public domain W3C validator