MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbssint Structured version   Unicode version

Theorem fbssint 19546
Description: A filter base contains subsets of its finite intersections. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Stefan O'Rear, 28-Jul-2015.)
Assertion
Ref Expression
fbssint  |-  ( ( F  e.  ( fBas `  B )  /\  A  C_  F  /\  A  e. 
Fin )  ->  E. x  e.  F  x  C_  |^| A
)
Distinct variable groups:    x, A    x, F    x, B

Proof of Theorem fbssint
StepHypRef Expression
1 fbasne0 19538 . . . . . 6  |-  ( F  e.  ( fBas `  B
)  ->  F  =/=  (/) )
2 n0 3757 . . . . . 6  |-  ( F  =/=  (/)  <->  E. x  x  e.  F )
31, 2sylib 196 . . . . 5  |-  ( F  e.  ( fBas `  B
)  ->  E. x  x  e.  F )
4 ssv 3487 . . . . . . . 8  |-  x  C_  _V
54jctr 542 . . . . . . 7  |-  ( x  e.  F  ->  (
x  e.  F  /\  x  C_  _V ) )
65eximi 1626 . . . . . 6  |-  ( E. x  x  e.  F  ->  E. x ( x  e.  F  /\  x  C_ 
_V ) )
7 df-rex 2805 . . . . . 6  |-  ( E. x  e.  F  x 
C_  _V  <->  E. x ( x  e.  F  /\  x  C_ 
_V ) )
86, 7sylibr 212 . . . . 5  |-  ( E. x  x  e.  F  ->  E. x  e.  F  x  C_  _V )
93, 8syl 16 . . . 4  |-  ( F  e.  ( fBas `  B
)  ->  E. x  e.  F  x  C_  _V )
10 inteq 4242 . . . . . . 7  |-  ( A  =  (/)  ->  |^| A  =  |^| (/) )
11 int0 4253 . . . . . . 7  |-  |^| (/)  =  _V
1210, 11syl6eq 2511 . . . . . 6  |-  ( A  =  (/)  ->  |^| A  =  _V )
1312sseq2d 3495 . . . . 5  |-  ( A  =  (/)  ->  ( x 
C_  |^| A  <->  x  C_  _V ) )
1413rexbidv 2868 . . . 4  |-  ( A  =  (/)  ->  ( E. x  e.  F  x 
C_  |^| A  <->  E. x  e.  F  x  C_  _V ) )
159, 14syl5ibrcom 222 . . 3  |-  ( F  e.  ( fBas `  B
)  ->  ( A  =  (/)  ->  E. x  e.  F  x  C_  |^| A
) )
16153ad2ant1 1009 . 2  |-  ( ( F  e.  ( fBas `  B )  /\  A  C_  F  /\  A  e. 
Fin )  ->  ( A  =  (/)  ->  E. x  e.  F  x  C_  |^| A
) )
17 simpl1 991 . . . 4  |-  ( ( ( F  e.  (
fBas `  B )  /\  A  C_  F  /\  A  e.  Fin )  /\  A  =/=  (/) )  ->  F  e.  ( fBas `  B ) )
18 simpl2 992 . . . . 5  |-  ( ( ( F  e.  (
fBas `  B )  /\  A  C_  F  /\  A  e.  Fin )  /\  A  =/=  (/) )  ->  A  C_  F )
19 simpr 461 . . . . 5  |-  ( ( ( F  e.  (
fBas `  B )  /\  A  C_  F  /\  A  e.  Fin )  /\  A  =/=  (/) )  ->  A  =/=  (/) )
20 simpl3 993 . . . . 5  |-  ( ( ( F  e.  (
fBas `  B )  /\  A  C_  F  /\  A  e.  Fin )  /\  A  =/=  (/) )  ->  A  e.  Fin )
21 elfir 7779 . . . . 5  |-  ( ( F  e.  ( fBas `  B )  /\  ( A  C_  F  /\  A  =/=  (/)  /\  A  e. 
Fin ) )  ->  |^| A  e.  ( fi
`  F ) )
2217, 18, 19, 20, 21syl13anc 1221 . . . 4  |-  ( ( ( F  e.  (
fBas `  B )  /\  A  C_  F  /\  A  e.  Fin )  /\  A  =/=  (/) )  ->  |^| A  e.  ( fi
`  F ) )
23 fbssfi 19545 . . . 4  |-  ( ( F  e.  ( fBas `  B )  /\  |^| A  e.  ( fi `  F ) )  ->  E. x  e.  F  x  C_  |^| A )
2417, 22, 23syl2anc 661 . . 3  |-  ( ( ( F  e.  (
fBas `  B )  /\  A  C_  F  /\  A  e.  Fin )  /\  A  =/=  (/) )  ->  E. x  e.  F  x  C_  |^| A )
2524ex 434 . 2  |-  ( ( F  e.  ( fBas `  B )  /\  A  C_  F  /\  A  e. 
Fin )  ->  ( A  =/=  (/)  ->  E. x  e.  F  x  C_  |^| A
) )
2616, 25pm2.61dne 2769 1  |-  ( ( F  e.  ( fBas `  B )  /\  A  C_  F  /\  A  e. 
Fin )  ->  E. x  e.  F  x  C_  |^| A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2648   E.wrex 2800   _Vcvv 3078    C_ wss 3439   (/)c0 3748   |^|cint 4239   ` cfv 5529   Fincfn 7423   ficfi 7774   fBascfbas 17932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-en 7424  df-fin 7427  df-fi 7775  df-fbas 17942
This theorem is referenced by:  fbasfip  19576
  Copyright terms: Public domain W3C validator