MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbflim2 Structured version   Unicode version

Theorem fbflim2 20229
Description: A condition for a filter base  B to converge to a point  A. Use neighborhoods instead of open neighborhoods. Compare fbflim 20228. (Contributed by FL, 4-Jul-2011.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbflim.3  |-  F  =  ( X filGen B )
Assertion
Ref Expression
fbflim2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) E. x  e.  B  x  C_  n
) ) )
Distinct variable groups:    x, n, A    B, n, x    n, J, x    n, X, x   
x, F
Allowed substitution hint:    F( n)

Proof of Theorem fbflim2
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 fbflim.3 . . 3  |-  F  =  ( X filGen B )
21fbflim 20228 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. y  e.  J  ( A  e.  y  ->  E. x  e.  B  x  C_  y
) ) ) )
3 topontop 19210 . . . . . . . . 9  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
43ad2antrr 725 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  J  e.  Top )
5 simpr 461 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  A  e.  X )
6 toponuni 19211 . . . . . . . . . 10  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
76ad2antrr 725 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  X  =  U. J )
85, 7eleqtrd 2557 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  A  e.  U. J )
9 eqid 2467 . . . . . . . . 9  |-  U. J  =  U. J
109isneip 19388 . . . . . . . 8  |-  ( ( J  e.  Top  /\  A  e.  U. J )  ->  ( n  e.  ( ( nei `  J
) `  { A } )  <->  ( n  C_ 
U. J  /\  E. y  e.  J  ( A  e.  y  /\  y  C_  n ) ) ) )
114, 8, 10syl2anc 661 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  (
n  e.  ( ( nei `  J ) `
 { A }
)  <->  ( n  C_  U. J  /\  E. y  e.  J  ( A  e.  y  /\  y  C_  n ) ) ) )
12 simpr 461 . . . . . . 7  |-  ( ( n  C_  U. J  /\  E. y  e.  J  ( A  e.  y  /\  y  C_  n ) )  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  n ) )
1311, 12syl6bi 228 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  (
n  e.  ( ( nei `  J ) `
 { A }
)  ->  E. y  e.  J  ( A  e.  y  /\  y  C_  n ) ) )
14 r19.29 2997 . . . . . . . 8  |-  ( ( A. y  e.  J  ( A  e.  y  ->  E. x  e.  B  x  C_  y )  /\  E. y  e.  J  ( A  e.  y  /\  y  C_  n ) )  ->  E. y  e.  J  ( ( A  e.  y  ->  E. x  e.  B  x  C_  y
)  /\  ( A  e.  y  /\  y  C_  n ) ) )
15 pm3.45 832 . . . . . . . . . . 11  |-  ( ( A  e.  y  ->  E. x  e.  B  x  C_  y )  -> 
( ( A  e.  y  /\  y  C_  n )  ->  ( E. x  e.  B  x  C_  y  /\  y  C_  n ) ) )
1615imp 429 . . . . . . . . . 10  |-  ( ( ( A  e.  y  ->  E. x  e.  B  x  C_  y )  /\  ( A  e.  y  /\  y  C_  n ) )  ->  ( E. x  e.  B  x  C_  y  /\  y  C_  n ) )
17 sstr2 3511 . . . . . . . . . . . . 13  |-  ( x 
C_  y  ->  (
y  C_  n  ->  x 
C_  n ) )
1817com12 31 . . . . . . . . . . . 12  |-  ( y 
C_  n  ->  (
x  C_  y  ->  x 
C_  n ) )
1918reximdv 2937 . . . . . . . . . . 11  |-  ( y 
C_  n  ->  ( E. x  e.  B  x  C_  y  ->  E. x  e.  B  x  C_  n
) )
2019impcom 430 . . . . . . . . . 10  |-  ( ( E. x  e.  B  x  C_  y  /\  y  C_  n )  ->  E. x  e.  B  x  C_  n
)
2116, 20syl 16 . . . . . . . . 9  |-  ( ( ( A  e.  y  ->  E. x  e.  B  x  C_  y )  /\  ( A  e.  y  /\  y  C_  n ) )  ->  E. x  e.  B  x  C_  n
)
2221rexlimivw 2952 . . . . . . . 8  |-  ( E. y  e.  J  ( ( A  e.  y  ->  E. x  e.  B  x  C_  y )  /\  ( A  e.  y  /\  y  C_  n ) )  ->  E. x  e.  B  x  C_  n
)
2314, 22syl 16 . . . . . . 7  |-  ( ( A. y  e.  J  ( A  e.  y  ->  E. x  e.  B  x  C_  y )  /\  E. y  e.  J  ( A  e.  y  /\  y  C_  n ) )  ->  E. x  e.  B  x  C_  n )
2423ex 434 . . . . . 6  |-  ( A. y  e.  J  ( A  e.  y  ->  E. x  e.  B  x 
C_  y )  -> 
( E. y  e.  J  ( A  e.  y  /\  y  C_  n )  ->  E. x  e.  B  x  C_  n
) )
2513, 24syl9 71 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  ( A. y  e.  J  ( A  e.  y  ->  E. x  e.  B  x  C_  y )  -> 
( n  e.  ( ( nei `  J
) `  { A } )  ->  E. x  e.  B  x  C_  n
) ) )
2625ralrimdv 2880 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  ( A. y  e.  J  ( A  e.  y  ->  E. x  e.  B  x  C_  y )  ->  A. n  e.  (
( nei `  J
) `  { A } ) E. x  e.  B  x  C_  n
) )
274adantr 465 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( y  e.  J  /\  A  e.  y ) )  ->  J  e.  Top )
28 simprl 755 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( y  e.  J  /\  A  e.  y ) )  -> 
y  e.  J )
29 simprr 756 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( y  e.  J  /\  A  e.  y ) )  ->  A  e.  y )
30 opnneip 19402 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  y  e.  J  /\  A  e.  y )  ->  y  e.  ( ( nei `  J ) `
 { A }
) )
3127, 28, 29, 30syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( y  e.  J  /\  A  e.  y ) )  -> 
y  e.  ( ( nei `  J ) `
 { A }
) )
32 sseq2 3526 . . . . . . . . . 10  |-  ( n  =  y  ->  (
x  C_  n  <->  x  C_  y
) )
3332rexbidv 2973 . . . . . . . . 9  |-  ( n  =  y  ->  ( E. x  e.  B  x  C_  n  <->  E. x  e.  B  x  C_  y
) )
3433rspcv 3210 . . . . . . . 8  |-  ( y  e.  ( ( nei `  J ) `  { A } )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) E. x  e.  B  x  C_  n  ->  E. x  e.  B  x  C_  y ) )
3531, 34syl 16 . . . . . . 7  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  ( y  e.  J  /\  A  e.  y ) )  -> 
( A. n  e.  ( ( nei `  J
) `  { A } ) E. x  e.  B  x  C_  n  ->  E. x  e.  B  x  C_  y ) )
3635expr 615 . . . . . 6  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  y  e.  J )  ->  ( A  e.  y  ->  ( A. n  e.  ( ( nei `  J
) `  { A } ) E. x  e.  B  x  C_  n  ->  E. x  e.  B  x  C_  y ) ) )
3736com23 78 . . . . 5  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X ) )  /\  A  e.  X
)  /\  y  e.  J )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) E. x  e.  B  x  C_  n  ->  ( A  e.  y  ->  E. x  e.  B  x  C_  y ) ) )
3837ralrimdva 2882 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) E. x  e.  B  x  C_  n  ->  A. y  e.  J  ( A  e.  y  ->  E. x  e.  B  x  C_  y ) ) )
3926, 38impbid 191 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  /\  A  e.  X )  ->  ( A. y  e.  J  ( A  e.  y  ->  E. x  e.  B  x  C_  y )  <->  A. n  e.  ( ( nei `  J
) `  { A } ) E. x  e.  B  x  C_  n
) )
4039pm5.32da 641 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  (
( A  e.  X  /\  A. y  e.  J  ( A  e.  y  ->  E. x  e.  B  x  C_  y ) )  <-> 
( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) E. x  e.  B  x  C_  n
) ) )
412, 40bitrd 253 1  |-  ( ( J  e.  (TopOn `  X )  /\  B  e.  ( fBas `  X
) )  ->  ( A  e.  ( J  fLim  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) E. x  e.  B  x  C_  n
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   {csn 4027   U.cuni 4245   ` cfv 5587  (class class class)co 6283   fBascfbas 18193   filGencfg 18194   Topctop 19177  TopOnctopon 19178   neicnei 19380    fLim cflim 20186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-fbas 18203  df-fg 18204  df-top 19182  df-topon 19185  df-ntr 19303  df-nei 19381  df-fil 20098  df-flim 20191
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator