MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasrn Structured version   Visualization version   Unicode version

Theorem fbasrn 20977
Description: Given a filter on a domain, produce a filter on the range. (Contributed by Jeff Hankins, 7-Sep-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
fbasrn.c  |-  C  =  ran  ( x  e.  B  |->  ( F "
x ) )
Assertion
Ref Expression
fbasrn  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  C  e.  ( fBas `  Y
) )
Distinct variable groups:    x, B    x, F    x, V    x, X    x, Y
Allowed substitution hint:    C( x)

Proof of Theorem fbasrn
Dummy variables  s 
r  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fbasrn.c . . 3  |-  C  =  ran  ( x  e.  B  |->  ( F "
x ) )
2 simpl2 1034 . . . . . . 7  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  x  e.  B
)  ->  F : X
--> Y )
3 imassrn 5185 . . . . . . . 8  |-  ( F
" x )  C_  ran  F
4 frn 5747 . . . . . . . 8  |-  ( F : X --> Y  ->  ran  F  C_  Y )
53, 4syl5ss 3429 . . . . . . 7  |-  ( F : X --> Y  -> 
( F " x
)  C_  Y )
62, 5syl 17 . . . . . 6  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  x  e.  B
)  ->  ( F " x )  C_  Y
)
7 simpl3 1035 . . . . . . 7  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  x  e.  B
)  ->  Y  e.  V )
8 elpw2g 4564 . . . . . . 7  |-  ( Y  e.  V  ->  (
( F " x
)  e.  ~P Y  <->  ( F " x ) 
C_  Y ) )
97, 8syl 17 . . . . . 6  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  x  e.  B
)  ->  ( ( F " x )  e. 
~P Y  <->  ( F " x )  C_  Y
) )
106, 9mpbird 240 . . . . 5  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  x  e.  B
)  ->  ( F " x )  e.  ~P Y )
11 eqid 2471 . . . . 5  |-  ( x  e.  B  |->  ( F
" x ) )  =  ( x  e.  B  |->  ( F "
x ) )
1210, 11fmptd 6061 . . . 4  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
x  e.  B  |->  ( F " x ) ) : B --> ~P Y
)
13 frn 5747 . . . 4  |-  ( ( x  e.  B  |->  ( F " x ) ) : B --> ~P Y  ->  ran  ( x  e.  B  |->  ( F "
x ) )  C_  ~P Y )
1412, 13syl 17 . . 3  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  ran  ( x  e.  B  |->  ( F " x
) )  C_  ~P Y )
151, 14syl5eqss 3462 . 2  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  C  C_ 
~P Y )
161a1i 11 . . . 4  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  C  =  ran  ( x  e.  B  |->  ( F "
x ) ) )
17 ffun 5742 . . . . . . . 8  |-  ( F : X --> Y  ->  Fun  F )
18173ad2ant2 1052 . . . . . . 7  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  Fun  F )
19 funimaexg 5670 . . . . . . . 8  |-  ( ( Fun  F  /\  x  e.  B )  ->  ( F " x )  e. 
_V )
2019ralrimiva 2809 . . . . . . 7  |-  ( Fun 
F  ->  A. x  e.  B  ( F " x )  e.  _V )
21 dmmptg 5339 . . . . . . 7  |-  ( A. x  e.  B  ( F " x )  e. 
_V  ->  dom  ( x  e.  B  |->  ( F
" x ) )  =  B )
2218, 20, 213syl 18 . . . . . 6  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  dom  ( x  e.  B  |->  ( F " x
) )  =  B )
23 fbasne0 20923 . . . . . . 7  |-  ( B  e.  ( fBas `  X
)  ->  B  =/=  (/) )
24233ad2ant1 1051 . . . . . 6  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  B  =/=  (/) )
2522, 24eqnetrd 2710 . . . . 5  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  dom  ( x  e.  B  |->  ( F " x
) )  =/=  (/) )
26 dm0rn0 5057 . . . . . 6  |-  ( dom  ( x  e.  B  |->  ( F " x
) )  =  (/)  <->  ran  ( x  e.  B  |->  ( F " x
) )  =  (/) )
2726necon3bii 2695 . . . . 5  |-  ( dom  ( x  e.  B  |->  ( F " x
) )  =/=  (/)  <->  ran  ( x  e.  B  |->  ( F
" x ) )  =/=  (/) )
2825, 27sylib 201 . . . 4  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  ran  ( x  e.  B  |->  ( F " x
) )  =/=  (/) )
2916, 28eqnetrd 2710 . . 3  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  C  =/=  (/) )
30 fbelss 20926 . . . . . . . . 9  |-  ( ( B  e.  ( fBas `  X )  /\  x  e.  B )  ->  x  C_  X )
3130ex 441 . . . . . . . 8  |-  ( B  e.  ( fBas `  X
)  ->  ( x  e.  B  ->  x  C_  X ) )
32313ad2ant1 1051 . . . . . . 7  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
x  e.  B  ->  x  C_  X ) )
33 0nelfb 20924 . . . . . . . . . 10  |-  ( B  e.  ( fBas `  X
)  ->  -.  (/)  e.  B
)
34 eleq1 2537 . . . . . . . . . . 11  |-  ( x  =  (/)  ->  ( x  e.  B  <->  (/)  e.  B
) )
3534notbid 301 . . . . . . . . . 10  |-  ( x  =  (/)  ->  ( -.  x  e.  B  <->  -.  (/)  e.  B
) )
3633, 35syl5ibrcom 230 . . . . . . . . 9  |-  ( B  e.  ( fBas `  X
)  ->  ( x  =  (/)  ->  -.  x  e.  B ) )
3736con2d 119 . . . . . . . 8  |-  ( B  e.  ( fBas `  X
)  ->  ( x  e.  B  ->  -.  x  =  (/) ) )
38373ad2ant1 1051 . . . . . . 7  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
x  e.  B  ->  -.  x  =  (/) ) )
3932, 38jcad 542 . . . . . 6  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
x  e.  B  -> 
( x  C_  X  /\  -.  x  =  (/) ) ) )
40 fdm 5745 . . . . . . . . . . . . . . 15  |-  ( F : X --> Y  ->  dom  F  =  X )
41403ad2ant2 1052 . . . . . . . . . . . . . 14  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  dom  F  =  X )
4241sseq2d 3446 . . . . . . . . . . . . 13  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
x  C_  dom  F  <->  x  C_  X
) )
4342biimpar 493 . . . . . . . . . . . 12  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  x  C_  X )  ->  x  C_  dom  F )
44 sseqin2 3642 . . . . . . . . . . . 12  |-  ( x 
C_  dom  F  <->  ( dom  F  i^i  x )  =  x )
4543, 44sylib 201 . . . . . . . . . . 11  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  x  C_  X )  ->  ( dom  F  i^i  x )  =  x )
4645eqeq1d 2473 . . . . . . . . . 10  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  x  C_  X )  ->  ( ( dom 
F  i^i  x )  =  (/)  <->  x  =  (/) ) )
4746biimpd 212 . . . . . . . . 9  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  x  C_  X )  ->  ( ( dom 
F  i^i  x )  =  (/)  ->  x  =  (/) ) )
4847con3d 140 . . . . . . . 8  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  x  C_  X )  ->  ( -.  x  =  (/)  ->  -.  ( dom  F  i^i  x )  =  (/) ) )
4948expimpd 614 . . . . . . 7  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
( x  C_  X  /\  -.  x  =  (/) )  ->  -.  ( dom  F  i^i  x )  =  (/) ) )
50 eqcom 2478 . . . . . . . . 9  |-  ( (/)  =  ( F "
x )  <->  ( F " x )  =  (/) )
51 imadisj 5193 . . . . . . . . 9  |-  ( ( F " x )  =  (/)  <->  ( dom  F  i^i  x )  =  (/) )
5250, 51bitri 257 . . . . . . . 8  |-  ( (/)  =  ( F "
x )  <->  ( dom  F  i^i  x )  =  (/) )
5352notbii 303 . . . . . . 7  |-  ( -.  (/)  =  ( F "
x )  <->  -.  ( dom  F  i^i  x )  =  (/) )
5449, 53syl6ibr 235 . . . . . 6  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
( x  C_  X  /\  -.  x  =  (/) )  ->  -.  (/)  =  ( F " x ) ) )
5539, 54syld 44 . . . . 5  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
x  e.  B  ->  -.  (/)  =  ( F
" x ) ) )
5655ralrimiv 2808 . . . 4  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  A. x  e.  B  -.  (/)  =  ( F " x ) )
571eleq2i 2541 . . . . . . 7  |-  ( (/)  e.  C  <->  (/)  e.  ran  (
x  e.  B  |->  ( F " x ) ) )
58 0ex 4528 . . . . . . . 8  |-  (/)  e.  _V
5911elrnmpt 5087 . . . . . . . 8  |-  ( (/)  e.  _V  ->  ( (/)  e.  ran  ( x  e.  B  |->  ( F " x
) )  <->  E. x  e.  B  (/)  =  ( F " x ) ) )
6058, 59ax-mp 5 . . . . . . 7  |-  ( (/)  e.  ran  ( x  e.  B  |->  ( F "
x ) )  <->  E. x  e.  B  (/)  =  ( F " x ) )
6157, 60bitri 257 . . . . . 6  |-  ( (/)  e.  C  <->  E. x  e.  B  (/)  =  ( F "
x ) )
6261notbii 303 . . . . 5  |-  ( -.  (/)  e.  C  <->  -.  E. x  e.  B  (/)  =  ( F " x ) )
63 df-nel 2644 . . . . 5  |-  ( (/)  e/  C  <->  -.  (/)  e.  C
)
64 ralnex 2834 . . . . 5  |-  ( A. x  e.  B  -.  (/)  =  ( F "
x )  <->  -.  E. x  e.  B  (/)  =  ( F " x ) )
6562, 63, 643bitr4i 285 . . . 4  |-  ( (/)  e/  C  <->  A. x  e.  B  -.  (/)  =  ( F
" x ) )
6656, 65sylibr 217 . . 3  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (/)  e/  C
)
671eleq2i 2541 . . . . . . . 8  |-  ( r  e.  C  <->  r  e.  ran  ( x  e.  B  |->  ( F " x
) ) )
68 vex 3034 . . . . . . . . 9  |-  r  e. 
_V
69 imaeq2 5170 . . . . . . . . . . 11  |-  ( x  =  u  ->  ( F " x )  =  ( F " u
) )
7069cbvmptv 4488 . . . . . . . . . 10  |-  ( x  e.  B  |->  ( F
" x ) )  =  ( u  e.  B  |->  ( F "
u ) )
7170elrnmpt 5087 . . . . . . . . 9  |-  ( r  e.  _V  ->  (
r  e.  ran  (
x  e.  B  |->  ( F " x ) )  <->  E. u  e.  B  r  =  ( F " u ) ) )
7268, 71ax-mp 5 . . . . . . . 8  |-  ( r  e.  ran  ( x  e.  B  |->  ( F
" x ) )  <->  E. u  e.  B  r  =  ( F " u ) )
7367, 72bitri 257 . . . . . . 7  |-  ( r  e.  C  <->  E. u  e.  B  r  =  ( F " u ) )
741eleq2i 2541 . . . . . . . 8  |-  ( s  e.  C  <->  s  e.  ran  ( x  e.  B  |->  ( F " x
) ) )
75 vex 3034 . . . . . . . . 9  |-  s  e. 
_V
76 imaeq2 5170 . . . . . . . . . . 11  |-  ( x  =  v  ->  ( F " x )  =  ( F " v
) )
7776cbvmptv 4488 . . . . . . . . . 10  |-  ( x  e.  B  |->  ( F
" x ) )  =  ( v  e.  B  |->  ( F "
v ) )
7877elrnmpt 5087 . . . . . . . . 9  |-  ( s  e.  _V  ->  (
s  e.  ran  (
x  e.  B  |->  ( F " x ) )  <->  E. v  e.  B  s  =  ( F " v ) ) )
7975, 78ax-mp 5 . . . . . . . 8  |-  ( s  e.  ran  ( x  e.  B  |->  ( F
" x ) )  <->  E. v  e.  B  s  =  ( F " v ) )
8074, 79bitri 257 . . . . . . 7  |-  ( s  e.  C  <->  E. v  e.  B  s  =  ( F " v ) )
8173, 80anbi12i 711 . . . . . 6  |-  ( ( r  e.  C  /\  s  e.  C )  <->  ( E. u  e.  B  r  =  ( F " u )  /\  E. v  e.  B  s  =  ( F "
v ) ) )
82 reeanv 2944 . . . . . 6  |-  ( E. u  e.  B  E. v  e.  B  (
r  =  ( F
" u )  /\  s  =  ( F " v ) )  <->  ( E. u  e.  B  r  =  ( F "
u )  /\  E. v  e.  B  s  =  ( F "
v ) ) )
8381, 82bitr4i 260 . . . . 5  |-  ( ( r  e.  C  /\  s  e.  C )  <->  E. u  e.  B  E. v  e.  B  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) )
84 fbasssin 20929 . . . . . . . . . . 11  |-  ( ( B  e.  ( fBas `  X )  /\  u  e.  B  /\  v  e.  B )  ->  E. w  e.  B  w  C_  (
u  i^i  v )
)
85843expb 1232 . . . . . . . . . 10  |-  ( ( B  e.  ( fBas `  X )  /\  (
u  e.  B  /\  v  e.  B )
)  ->  E. w  e.  B  w  C_  (
u  i^i  v )
)
86853ad2antl1 1192 . . . . . . . . 9  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  ( u  e.  B  /\  v  e.  B
) )  ->  E. w  e.  B  w  C_  (
u  i^i  v )
)
8786adantrr 731 . . . . . . . 8  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  ( ( u  e.  B  /\  v  e.  B )  /\  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) ) )  ->  E. w  e.  B  w  C_  (
u  i^i  v )
)
88 eqid 2471 . . . . . . . . . . . . 13  |-  ( F
" w )  =  ( F " w
)
89 imaeq2 5170 . . . . . . . . . . . . . . 15  |-  ( x  =  w  ->  ( F " x )  =  ( F " w
) )
9089eqeq2d 2481 . . . . . . . . . . . . . 14  |-  ( x  =  w  ->  (
( F " w
)  =  ( F
" x )  <->  ( F " w )  =  ( F " w ) ) )
9190rspcev 3136 . . . . . . . . . . . . 13  |-  ( ( w  e.  B  /\  ( F " w )  =  ( F "
w ) )  ->  E. x  e.  B  ( F " w )  =  ( F "
x ) )
9288, 91mpan2 685 . . . . . . . . . . . 12  |-  ( w  e.  B  ->  E. x  e.  B  ( F " w )  =  ( F " x ) )
9392ad2antrl 742 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  ( fBas `  X
)  /\  F : X
--> Y  /\  Y  e.  V )  /\  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) )  /\  ( w  e.  B  /\  w  C_  ( u  i^i  v
) ) )  ->  E. x  e.  B  ( F " w )  =  ( F "
x ) )
941eleq2i 2541 . . . . . . . . . . . . 13  |-  ( ( F " w )  e.  C  <->  ( F " w )  e.  ran  ( x  e.  B  |->  ( F " x
) ) )
95 vex 3034 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
9695funimaex 5671 . . . . . . . . . . . . . 14  |-  ( Fun 
F  ->  ( F " w )  e.  _V )
9711elrnmpt 5087 . . . . . . . . . . . . . 14  |-  ( ( F " w )  e.  _V  ->  (
( F " w
)  e.  ran  (
x  e.  B  |->  ( F " x ) )  <->  E. x  e.  B  ( F " w )  =  ( F "
x ) ) )
9818, 96, 973syl 18 . . . . . . . . . . . . 13  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
( F " w
)  e.  ran  (
x  e.  B  |->  ( F " x ) )  <->  E. x  e.  B  ( F " w )  =  ( F "
x ) ) )
9994, 98syl5bb 265 . . . . . . . . . . . 12  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
( F " w
)  e.  C  <->  E. x  e.  B  ( F " w )  =  ( F " x ) ) )
10099ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  ( fBas `  X
)  /\  F : X
--> Y  /\  Y  e.  V )  /\  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) )  /\  ( w  e.  B  /\  w  C_  ( u  i^i  v
) ) )  -> 
( ( F "
w )  e.  C  <->  E. x  e.  B  ( F " w )  =  ( F "
x ) ) )
10193, 100mpbird 240 . . . . . . . . . 10  |-  ( ( ( ( B  e.  ( fBas `  X
)  /\  F : X
--> Y  /\  Y  e.  V )  /\  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) )  /\  ( w  e.  B  /\  w  C_  ( u  i^i  v
) ) )  -> 
( F " w
)  e.  C )
102 imass2 5210 . . . . . . . . . . . 12  |-  ( w 
C_  ( u  i^i  v )  ->  ( F " w )  C_  ( F " ( u  i^i  v ) ) )
103102ad2antll 743 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  ( fBas `  X
)  /\  F : X
--> Y  /\  Y  e.  V )  /\  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) )  /\  ( w  e.  B  /\  w  C_  ( u  i^i  v
) ) )  -> 
( F " w
)  C_  ( F " ( u  i^i  v
) ) )
104 inss1 3643 . . . . . . . . . . . . . 14  |-  ( u  i^i  v )  C_  u
105 imass2 5210 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  v ) 
C_  u  ->  ( F " ( u  i^i  v ) )  C_  ( F " u ) )
106104, 105ax-mp 5 . . . . . . . . . . . . 13  |-  ( F
" ( u  i^i  v ) )  C_  ( F " u )
107 inss2 3644 . . . . . . . . . . . . . 14  |-  ( u  i^i  v )  C_  v
108 imass2 5210 . . . . . . . . . . . . . 14  |-  ( ( u  i^i  v ) 
C_  v  ->  ( F " ( u  i^i  v ) )  C_  ( F " v ) )
109107, 108ax-mp 5 . . . . . . . . . . . . 13  |-  ( F
" ( u  i^i  v ) )  C_  ( F " v )
110106, 109ssini 3646 . . . . . . . . . . . 12  |-  ( F
" ( u  i^i  v ) )  C_  ( ( F "
u )  i^i  ( F " v ) )
111 ineq12 3620 . . . . . . . . . . . . 13  |-  ( ( r  =  ( F
" u )  /\  s  =  ( F " v ) )  -> 
( r  i^i  s
)  =  ( ( F " u )  i^i  ( F "
v ) ) )
112111ad2antlr 741 . . . . . . . . . . . 12  |-  ( ( ( ( B  e.  ( fBas `  X
)  /\  F : X
--> Y  /\  Y  e.  V )  /\  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) )  /\  ( w  e.  B  /\  w  C_  ( u  i^i  v
) ) )  -> 
( r  i^i  s
)  =  ( ( F " u )  i^i  ( F "
v ) ) )
113110, 112syl5sseqr 3467 . . . . . . . . . . 11  |-  ( ( ( ( B  e.  ( fBas `  X
)  /\  F : X
--> Y  /\  Y  e.  V )  /\  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) )  /\  ( w  e.  B  /\  w  C_  ( u  i^i  v
) ) )  -> 
( F " (
u  i^i  v )
)  C_  ( r  i^i  s ) )
114103, 113sstrd 3428 . . . . . . . . . 10  |-  ( ( ( ( B  e.  ( fBas `  X
)  /\  F : X
--> Y  /\  Y  e.  V )  /\  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) )  /\  ( w  e.  B  /\  w  C_  ( u  i^i  v
) ) )  -> 
( F " w
)  C_  ( r  i^i  s ) )
115 sseq1 3439 . . . . . . . . . . 11  |-  ( z  =  ( F "
w )  ->  (
z  C_  ( r  i^i  s )  <->  ( F " w )  C_  (
r  i^i  s )
) )
116115rspcev 3136 . . . . . . . . . 10  |-  ( ( ( F " w
)  e.  C  /\  ( F " w ) 
C_  ( r  i^i  s ) )  ->  E. z  e.  C  z  C_  ( r  i^i  s ) )
117101, 114, 116syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( B  e.  ( fBas `  X
)  /\  F : X
--> Y  /\  Y  e.  V )  /\  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) )  /\  ( w  e.  B  /\  w  C_  ( u  i^i  v
) ) )  ->  E. z  e.  C  z  C_  ( r  i^i  s ) )
118117adantlrl 734 . . . . . . . 8  |-  ( ( ( ( B  e.  ( fBas `  X
)  /\  F : X
--> Y  /\  Y  e.  V )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  ( r  =  ( F "
u )  /\  s  =  ( F "
v ) ) ) )  /\  ( w  e.  B  /\  w  C_  ( u  i^i  v
) ) )  ->  E. z  e.  C  z  C_  ( r  i^i  s ) )
11987, 118rexlimddv 2875 . . . . . . 7  |-  ( ( ( B  e.  (
fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  /\  ( ( u  e.  B  /\  v  e.  B )  /\  (
r  =  ( F
" u )  /\  s  =  ( F " v ) ) ) )  ->  E. z  e.  C  z  C_  ( r  i^i  s
) )
120119exp32 616 . . . . . 6  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
( u  e.  B  /\  v  e.  B
)  ->  ( (
r  =  ( F
" u )  /\  s  =  ( F " v ) )  ->  E. z  e.  C  z  C_  ( r  i^i  s ) ) ) )
121120rexlimdvv 2877 . . . . 5  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  ( E. u  e.  B  E. v  e.  B  ( r  =  ( F " u )  /\  s  =  ( F " v ) )  ->  E. z  e.  C  z  C_  ( r  i^i  s
) ) )
12283, 121syl5bi 225 . . . 4  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  (
( r  e.  C  /\  s  e.  C
)  ->  E. z  e.  C  z  C_  ( r  i^i  s
) ) )
123122ralrimivv 2813 . . 3  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  A. r  e.  C  A. s  e.  C  E. z  e.  C  z  C_  ( r  i^i  s
) )
12429, 66, 1233jca 1210 . 2  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  ( C  =/=  (/)  /\  (/)  e/  C  /\  A. r  e.  C  A. s  e.  C  E. z  e.  C  z  C_  ( r  i^i  s ) ) )
125 isfbas2 20928 . . 3  |-  ( Y  e.  V  ->  ( C  e.  ( fBas `  Y )  <->  ( C  C_ 
~P Y  /\  ( C  =/=  (/)  /\  (/)  e/  C  /\  A. r  e.  C  A. s  e.  C  E. z  e.  C  z  C_  ( r  i^i  s ) ) ) ) )
1261253ad2ant3 1053 . 2  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  ( C  e.  ( fBas `  Y )  <->  ( C  C_ 
~P Y  /\  ( C  =/=  (/)  /\  (/)  e/  C  /\  A. r  e.  C  A. s  e.  C  E. z  e.  C  z  C_  ( r  i^i  s ) ) ) ) )
12715, 124, 126mpbir2and 936 1  |-  ( ( B  e.  ( fBas `  X )  /\  F : X --> Y  /\  Y  e.  V )  ->  C  e.  ( fBas `  Y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904    =/= wne 2641    e/ wnel 2642   A.wral 2756   E.wrex 2757   _Vcvv 3031    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942    |-> cmpt 4454   dom cdm 4839   ran crn 4840   "cima 4842   Fun wfun 5583   -->wf 5585   ` cfv 5589   fBascfbas 19035
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fv 5597  df-fbas 19044
This theorem is referenced by:  fmfil  21037  fmss  21039  elfm  21040  fmucnd  21385  fmcfil  22320
  Copyright terms: Public domain W3C validator