MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasfip Structured version   Unicode version

Theorem fbasfip 19446
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasfip  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  ( fi `  F ) )

Proof of Theorem fbasfip
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3544 . . . . . 6  |-  ( y  e.  ( ~P F  i^i  Fin )  <->  ( y  e.  ~P F  /\  y  e.  Fin ) )
2 elpwi 3874 . . . . . . 7  |-  ( y  e.  ~P F  -> 
y  C_  F )
32anim1i 568 . . . . . 6  |-  ( ( y  e.  ~P F  /\  y  e.  Fin )  ->  ( y  C_  F  /\  y  e.  Fin ) )
41, 3sylbi 195 . . . . 5  |-  ( y  e.  ( ~P F  i^i  Fin )  ->  (
y  C_  F  /\  y  e.  Fin )
)
5 fbssint 19416 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  y  C_  F  /\  y  e. 
Fin )  ->  E. z  e.  F  z  C_  |^| y )
653expb 1188 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  (
y  C_  F  /\  y  e.  Fin )
)  ->  E. z  e.  F  z  C_  |^| y )
74, 6sylan2 474 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin ) )  ->  E. z  e.  F  z  C_  |^| y )
8 0nelfb 19409 . . . . . . . . 9  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  F
)
98ad2antrr 725 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  (/) 
e.  F )
10 eleq1 2503 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( z  e.  F  <->  (/)  e.  F
) )
1110biimpcd 224 . . . . . . . . 9  |-  ( z  e.  F  ->  (
z  =  (/)  ->  (/)  e.  F
) )
1211adantl 466 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  (
z  =  (/)  ->  (/)  e.  F
) )
139, 12mtod 177 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  z  =  (/) )
14 ss0 3673 . . . . . . 7  |-  ( z 
C_  (/)  ->  z  =  (/) )
1513, 14nsyl 121 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  z  C_  (/) )
1615adantrr 716 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  -.  z  C_  (/) )
17 sseq2 3383 . . . . . . 7  |-  ( (/)  =  |^| y  ->  (
z  C_  (/)  <->  z  C_  |^| y ) )
1817biimprcd 225 . . . . . 6  |-  ( z 
C_  |^| y  ->  ( (/)  =  |^| y  -> 
z  C_  (/) ) )
1918ad2antll 728 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  ( (/)  =  |^| y  ->  z  C_  (/) ) )
2016, 19mtod 177 . . . 4  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  -.  (/)  =  |^| y )
217, 20rexlimddv 2850 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin ) )  ->  -.  (/)  =  |^| y )
2221nrexdv 2824 . 2  |-  ( F  e.  ( fBas `  X
)  ->  -.  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y )
23 0ex 4427 . . 3  |-  (/)  e.  _V
24 elfi 7668 . . 3  |-  ( (
(/)  e.  _V  /\  F  e.  ( fBas `  X
) )  ->  ( (/) 
e.  ( fi `  F )  <->  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y ) )
2523, 24mpan 670 . 2  |-  ( F  e.  ( fBas `  X
)  ->  ( (/)  e.  ( fi `  F )  <->  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y ) )
2622, 25mtbird 301 1  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  ( fi `  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   E.wrex 2721   _Vcvv 2977    i^i cin 3332    C_ wss 3333   (/)c0 3642   ~Pcpw 3865   |^|cint 4133   ` cfv 5423   Fincfn 7315   ficfi 7665   fBascfbas 17809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-1o 6925  df-oadd 6929  df-er 7106  df-en 7316  df-fin 7319  df-fi 7666  df-fbas 17819
This theorem is referenced by:  fbunfip  19447
  Copyright terms: Public domain W3C validator