MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fbasfip Structured version   Unicode version

Theorem fbasfip 20104
Description: A filter base has the finite intersection property. (Contributed by Jeff Hankins, 2-Sep-2009.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
fbasfip  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  ( fi `  F ) )

Proof of Theorem fbasfip
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elin 3687 . . . . . 6  |-  ( y  e.  ( ~P F  i^i  Fin )  <->  ( y  e.  ~P F  /\  y  e.  Fin ) )
2 elpwi 4019 . . . . . . 7  |-  ( y  e.  ~P F  -> 
y  C_  F )
32anim1i 568 . . . . . 6  |-  ( ( y  e.  ~P F  /\  y  e.  Fin )  ->  ( y  C_  F  /\  y  e.  Fin ) )
41, 3sylbi 195 . . . . 5  |-  ( y  e.  ( ~P F  i^i  Fin )  ->  (
y  C_  F  /\  y  e.  Fin )
)
5 fbssint 20074 . . . . . 6  |-  ( ( F  e.  ( fBas `  X )  /\  y  C_  F  /\  y  e. 
Fin )  ->  E. z  e.  F  z  C_  |^| y )
653expb 1197 . . . . 5  |-  ( ( F  e.  ( fBas `  X )  /\  (
y  C_  F  /\  y  e.  Fin )
)  ->  E. z  e.  F  z  C_  |^| y )
74, 6sylan2 474 . . . 4  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin ) )  ->  E. z  e.  F  z  C_  |^| y )
8 0nelfb 20067 . . . . . . . . 9  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  F
)
98ad2antrr 725 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  (/) 
e.  F )
10 eleq1 2539 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( z  e.  F  <->  (/)  e.  F
) )
1110biimpcd 224 . . . . . . . . 9  |-  ( z  e.  F  ->  (
z  =  (/)  ->  (/)  e.  F
) )
1211adantl 466 . . . . . . . 8  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  (
z  =  (/)  ->  (/)  e.  F
) )
139, 12mtod 177 . . . . . . 7  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  z  =  (/) )
14 ss0 3816 . . . . . . 7  |-  ( z 
C_  (/)  ->  z  =  (/) )
1513, 14nsyl 121 . . . . . 6  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  z  e.  F )  ->  -.  z  C_  (/) )
1615adantrr 716 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  -.  z  C_  (/) )
17 sseq2 3526 . . . . . . 7  |-  ( (/)  =  |^| y  ->  (
z  C_  (/)  <->  z  C_  |^| y ) )
1817biimprcd 225 . . . . . 6  |-  ( z 
C_  |^| y  ->  ( (/)  =  |^| y  -> 
z  C_  (/) ) )
1918ad2antll 728 . . . . 5  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  ( (/)  =  |^| y  ->  z  C_  (/) ) )
2016, 19mtod 177 . . . 4  |-  ( ( ( F  e.  (
fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin )
)  /\  ( z  e.  F  /\  z  C_ 
|^| y ) )  ->  -.  (/)  =  |^| y )
217, 20rexlimddv 2959 . . 3  |-  ( ( F  e.  ( fBas `  X )  /\  y  e.  ( ~P F  i^i  Fin ) )  ->  -.  (/)  =  |^| y )
2221nrexdv 2920 . 2  |-  ( F  e.  ( fBas `  X
)  ->  -.  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y )
23 0ex 4577 . . 3  |-  (/)  e.  _V
24 elfi 7869 . . 3  |-  ( (
(/)  e.  _V  /\  F  e.  ( fBas `  X
) )  ->  ( (/) 
e.  ( fi `  F )  <->  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y ) )
2523, 24mpan 670 . 2  |-  ( F  e.  ( fBas `  X
)  ->  ( (/)  e.  ( fi `  F )  <->  E. y  e.  ( ~P F  i^i  Fin ) (/)  =  |^| y ) )
2622, 25mtbird 301 1  |-  ( F  e.  ( fBas `  X
)  ->  -.  (/)  e.  ( fi `  F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815   _Vcvv 3113    i^i cin 3475    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   |^|cint 4282   ` cfv 5586   Fincfn 7513   ficfi 7866   fBascfbas 18177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-fin 7517  df-fi 7867  df-fbas 18187
This theorem is referenced by:  fbunfip  20105
  Copyright terms: Public domain W3C validator