MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fargshiftlem Structured version   Unicode version

Theorem fargshiftlem 23532
Description: If a class is a function, then also its "shifted function" is a function. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
Assertion
Ref Expression
fargshiftlem  |-  ( ( N  e.  NN0  /\  X  e.  ( 0..^ N ) )  -> 
( X  +  1 )  e.  ( 1 ... N ) )

Proof of Theorem fargshiftlem
StepHypRef Expression
1 1z 10688 . . . 4  |-  1  e.  ZZ
2 fzoaddel 11609 . . . 4  |-  ( ( X  e.  ( 0..^ N )  /\  1  e.  ZZ )  ->  ( X  +  1 )  e.  ( ( 0  +  1 )..^ ( N  +  1 ) ) )
31, 2mpan2 671 . . 3  |-  ( X  e.  ( 0..^ N )  ->  ( X  +  1 )  e.  ( ( 0  +  1 )..^ ( N  +  1 ) ) )
43adantl 466 . 2  |-  ( ( N  e.  NN0  /\  X  e.  ( 0..^ N ) )  -> 
( X  +  1 )  e.  ( ( 0  +  1 )..^ ( N  +  1 ) ) )
5 0p1e1 10445 . . . . . 6  |-  ( 0  +  1 )  =  1
65oveq1i 6113 . . . . 5  |-  ( ( 0  +  1 )..^ ( N  +  1 ) )  =  ( 1..^ ( N  + 
1 ) )
7 nn0z 10681 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
8 fzval3 11617 . . . . . . 7  |-  ( N  e.  ZZ  ->  (
1 ... N )  =  ( 1..^ ( N  +  1 ) ) )
98eqcomd 2448 . . . . . 6  |-  ( N  e.  ZZ  ->  (
1..^ ( N  + 
1 ) )  =  ( 1 ... N
) )
107, 9syl 16 . . . . 5  |-  ( N  e.  NN0  ->  ( 1..^ ( N  +  1 ) )  =  ( 1 ... N ) )
116, 10syl5eq 2487 . . . 4  |-  ( N  e.  NN0  ->  ( ( 0  +  1 )..^ ( N  +  1 ) )  =  ( 1 ... N ) )
1211eleq2d 2510 . . 3  |-  ( N  e.  NN0  ->  ( ( X  +  1 )  e.  ( ( 0  +  1 )..^ ( N  +  1 ) )  <->  ( X  + 
1 )  e.  ( 1 ... N ) ) )
1312adantr 465 . 2  |-  ( ( N  e.  NN0  /\  X  e.  ( 0..^ N ) )  -> 
( ( X  + 
1 )  e.  ( ( 0  +  1 )..^ ( N  + 
1 ) )  <->  ( X  +  1 )  e.  ( 1 ... N
) ) )
144, 13mpbid 210 1  |-  ( ( N  e.  NN0  /\  X  e.  ( 0..^ N ) )  -> 
( X  +  1 )  e.  ( 1 ... N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756  (class class class)co 6103   0cc0 9294   1c1 9295    + caddc 9297   NN0cn0 10591   ZZcz 10658   ...cfz 11449  ..^cfzo 11560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-nn 10335  df-n0 10592  df-z 10659  df-uz 10874  df-fz 11450  df-fzo 11561
This theorem is referenced by:  fargshiftf  23534  fargshiftf1  23535  fargshiftfo  23536  fargshiftfva  23537  eupatrl  23601  wwlknredwwlkn  30370
  Copyright terms: Public domain W3C validator