MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fargshiftfv Structured version   Unicode version

Theorem fargshiftfv 24311
Description: If a class is a function, then the values of the "shifted function" correspond to the function values of the class. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g  |-  G  =  ( x  e.  ( 0..^ ( # `  F
) )  |->  ( F `
 ( x  + 
1 ) ) )
Assertion
Ref Expression
fargshiftfv  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom  E
)  ->  ( X  e.  ( 0..^ N )  ->  ( G `  X )  =  ( F `  ( X  +  1 ) ) ) )
Distinct variable groups:    x, F    x, E    x, X
Allowed substitution hints:    G( x)    N( x)

Proof of Theorem fargshiftfv
StepHypRef Expression
1 ffn 5729 . . . . 5  |-  ( F : ( 1 ... N ) --> dom  E  ->  F  Fn  ( 1 ... N ) )
2 fseq1hash 12408 . . . . . 6  |-  ( ( N  e.  NN0  /\  F  Fn  ( 1 ... N ) )  ->  ( # `  F
)  =  N )
3 oveq2 6290 . . . . . . . . 9  |-  ( N  =  ( # `  F
)  ->  ( 0..^ N )  =  ( 0..^ ( # `  F
) ) )
43eqcoms 2479 . . . . . . . 8  |-  ( (
# `  F )  =  N  ->  ( 0..^ N )  =  ( 0..^ ( # `  F
) ) )
54eleq2d 2537 . . . . . . 7  |-  ( (
# `  F )  =  N  ->  ( X  e.  ( 0..^ N )  <->  X  e.  (
0..^ ( # `  F
) ) ) )
65biimpd 207 . . . . . 6  |-  ( (
# `  F )  =  N  ->  ( X  e.  ( 0..^ N )  ->  X  e.  ( 0..^ ( # `  F
) ) ) )
72, 6syl 16 . . . . 5  |-  ( ( N  e.  NN0  /\  F  Fn  ( 1 ... N ) )  ->  ( X  e.  ( 0..^ N )  ->  X  e.  ( 0..^ ( # `  F
) ) ) )
81, 7sylan2 474 . . . 4  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom  E
)  ->  ( X  e.  ( 0..^ N )  ->  X  e.  ( 0..^ ( # `  F
) ) ) )
98imp 429 . . 3  |-  ( ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom 
E )  /\  X  e.  ( 0..^ N ) )  ->  X  e.  ( 0..^ ( # `  F
) ) )
10 fvex 5874 . . 3  |-  ( F `
 ( X  + 
1 ) )  e. 
_V
11 oveq1 6289 . . . . 5  |-  ( x  =  X  ->  (
x  +  1 )  =  ( X  + 
1 ) )
1211fveq2d 5868 . . . 4  |-  ( x  =  X  ->  ( F `  ( x  +  1 ) )  =  ( F `  ( X  +  1
) ) )
13 fargshift.g . . . 4  |-  G  =  ( x  e.  ( 0..^ ( # `  F
) )  |->  ( F `
 ( x  + 
1 ) ) )
1412, 13fvmptg 5946 . . 3  |-  ( ( X  e.  ( 0..^ ( # `  F
) )  /\  ( F `  ( X  +  1 ) )  e.  _V )  -> 
( G `  X
)  =  ( F `
 ( X  + 
1 ) ) )
159, 10, 14sylancl 662 . 2  |-  ( ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom 
E )  /\  X  e.  ( 0..^ N ) )  ->  ( G `  X )  =  ( F `  ( X  +  1 ) ) )
1615ex 434 1  |-  ( ( N  e.  NN0  /\  F : ( 1 ... N ) --> dom  E
)  ->  ( X  e.  ( 0..^ N )  ->  ( G `  X )  =  ( F `  ( X  +  1 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3113    |-> cmpt 4505   dom cdm 4999    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282   0cc0 9488   1c1 9489    + caddc 9491   NN0cn0 10791   ...cfz 11668  ..^cfzo 11788   #chash 12369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-hash 12370
This theorem is referenced by:  fargshiftf1  24313  fargshiftfva  24315  eupatrl  24644
  Copyright terms: Public domain W3C validator