MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falxortru Structured version   Visualization version   Unicode version

Theorem falxortru 1493
Description: A  \/_ identity. (Contributed by David A. Wheeler, 9-May-2015.) (Proof shortened by Wolf Lammen, 10-Jul-2020.)
Assertion
Ref Expression
falxortru  |-  ( ( F.  \/_ T.  )  <-> T.  )

Proof of Theorem falxortru
StepHypRef Expression
1 xorcom 1408 . 2  |-  ( ( F.  \/_ T.  )  <->  ( T.  \/_ F.  )
)
2 truxorfal 1492 . 2  |-  ( ( T.  \/_ F.  )  <-> T.  )
31, 2bitri 253 1  |-  ( ( F.  \/_ T.  )  <-> T.  )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 188    \/_ wxo 1405   T. wtru 1445   F. wfal 1449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-xor 1406  df-tru 1447  df-fal 1450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator