MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falortru Structured version   Unicode version

Theorem falortru 1465
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falortru  |-  ( ( F.  \/ T.  )  <-> T.  )

Proof of Theorem falortru
StepHypRef Expression
1 tru 1441 . . 3  |- T.
21olci 392 . 2  |-  ( F.  \/ T.  )
32bitru 1449 1  |-  ( ( F.  \/ T.  )  <-> T.  )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    \/ wo 369   T. wtru 1438   F. wfal 1442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371  df-tru 1440
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator