MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falorfal Structured version   Unicode version

Theorem falorfal 1468
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falorfal  |-  ( ( F.  \/ F.  )  <-> F.  )

Proof of Theorem falorfal
StepHypRef Expression
1 oridm 516 1  |-  ( ( F.  \/ F.  )  <-> F.  )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 187    \/ wo 369   F. wfal 1442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator