MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falimfal Structured version   Visualization version   Unicode version

Theorem falimfal 1477
Description: A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falimfal  |-  ( ( F.  -> F.  )  <-> T.  )

Proof of Theorem falimfal
StepHypRef Expression
1 id 22 . 2  |-  ( F. 
-> F.  )
21bitru 1456 1  |-  ( ( F.  -> F.  )  <-> T.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188   T. wtru 1445   F. wfal 1449
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 189  df-tru 1447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator