MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falimd Structured version   Unicode version

Theorem falimd 1452
Description: The truth value F. implies anything. (Contributed by Mario Carneiro, 9-Feb-2017.)
Assertion
Ref Expression
falimd  |-  ( (
ph  /\ F.  )  ->  ps )

Proof of Theorem falimd
StepHypRef Expression
1 falim 1451 . 2  |-  ( F. 
->  ps )
21adantl 467 1  |-  ( (
ph  /\ F.  )  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370   F. wfal 1442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-fal 1443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator