MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falbifal Structured version   Visualization version   Unicode version

Theorem falbifal 1496
Description: A  <-> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
falbifal  |-  ( ( F.  <-> F.  )  <-> T.  )

Proof of Theorem falbifal
StepHypRef Expression
1 biid 244 . 2  |-  ( F.  <-> F.  )
21bitru 1467 1  |-  ( ( F.  <-> F.  )  <-> T.  )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189   T. wtru 1456   F. wfal 1460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 190  df-tru 1458
This theorem is referenced by:  falxorfal  1506
  Copyright terms: Public domain W3C validator