MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  falanfal Structured version   Unicode version

Theorem falanfal 1396
Description: A  /\ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
falanfal  |-  ( ( F.  /\ F.  )  <-> F.  )

Proof of Theorem falanfal
StepHypRef Expression
1 anidm 644 1  |-  ( ( F.  /\ F.  )  <-> F.  )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369   F. wfal 1374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-an 371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator