Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fafvelrn Structured version   Visualization version   Unicode version

Theorem fafvelrn 38817
Description: A function's value belongs to its codomain, analogous to ffvelrn 6035. (Contributed by Alexander van der Vekens, 25-May-2017.)
Assertion
Ref Expression
fafvelrn  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( F''' C )  e.  B
)

Proof of Theorem fafvelrn
StepHypRef Expression
1 ffn 5739 . . 3  |-  ( F : A --> B  ->  F  Fn  A )
2 fnafvelrn 38816 . . 3  |-  ( ( F  Fn  A  /\  C  e.  A )  ->  ( F''' C )  e.  ran  F )
31, 2sylan 479 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( F''' C )  e.  ran  F )
4 frn 5747 . . . 4  |-  ( F : A --> B  ->  ran  F  C_  B )
54sseld 3417 . . 3  |-  ( F : A --> B  -> 
( ( F''' C )  e.  ran  F  -> 
( F''' C )  e.  B
) )
65adantr 472 . 2  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( ( F''' C )  e.  ran  F  -> 
( F''' C )  e.  B
) )
73, 6mpd 15 1  |-  ( ( F : A --> B  /\  C  e.  A )  ->  ( F''' C )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    e. wcel 1904   ran crn 4840    Fn wfn 5584   -->wf 5585  '''cafv 38760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pr 4639
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-br 4396  df-opab 4455  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fv 5597  df-dfat 38762  df-afv 38763
This theorem is referenced by:  ffnafv  38818
  Copyright terms: Public domain W3C validator